123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347 |
- *DECK DPCHIC
- SUBROUTINE DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK,
- + IERR)
- C***BEGIN PROLOGUE DPCHIC
- C***PURPOSE Set derivatives needed to determine a piecewise monotone
- C piecewise cubic Hermite interpolant to given data.
- C User control is available over boundary conditions and/or
- C treatment of points where monotonicity switches direction.
- C***LIBRARY SLATEC (PCHIP)
- C***CATEGORY E1A
- C***TYPE DOUBLE PRECISION (PCHIC-S, DPCHIC-D)
- C***KEYWORDS CUBIC HERMITE INTERPOLATION, MONOTONE INTERPOLATION,
- C PCHIP, PIECEWISE CUBIC INTERPOLATION,
- C SHAPE-PRESERVING INTERPOLATION
- C***AUTHOR Fritsch, F. N., (LLNL)
- C Lawrence Livermore National Laboratory
- C P.O. Box 808 (L-316)
- C Livermore, CA 94550
- C FTS 532-4275, (510) 422-4275
- C***DESCRIPTION
- C
- C DPCHIC: Piecewise Cubic Hermite Interpolation Coefficients.
- C
- C Sets derivatives needed to determine a piecewise monotone piece-
- C wise cubic interpolant to the data given in X and F satisfying the
- C boundary conditions specified by IC and VC.
- C
- C The treatment of points where monotonicity switches direction is
- C controlled by argument SWITCH.
- C
- C To facilitate two-dimensional applications, includes an increment
- C between successive values of the F- and D-arrays.
- C
- C The resulting piecewise cubic Hermite function may be evaluated
- C by DPCHFE or DPCHFD.
- C
- C ----------------------------------------------------------------------
- C
- C Calling sequence:
- C
- C PARAMETER (INCFD = ...)
- C INTEGER IC(2), N, NWK, IERR
- C DOUBLE PRECISION VC(2), SWITCH, X(N), F(INCFD,N), D(INCFD,N),
- C WK(NWK)
- C
- C CALL DPCHIC (IC, VC, SWITCH, N, X, F, D, INCFD, WK, NWK, IERR)
- C
- C Parameters:
- C
- C IC -- (input) integer array of length 2 specifying desired
- C boundary conditions:
- C IC(1) = IBEG, desired condition at beginning of data.
- C IC(2) = IEND, desired condition at end of data.
- C
- C IBEG = 0 for the default boundary condition (the same as
- C used by DPCHIM).
- C If IBEG.NE.0, then its sign indicates whether the boundary
- C derivative is to be adjusted, if necessary, to be
- C compatible with monotonicity:
- C IBEG.GT.0 if no adjustment is to be performed.
- C IBEG.LT.0 if the derivative is to be adjusted for
- C monotonicity.
- C
- C Allowable values for the magnitude of IBEG are:
- C IBEG = 1 if first derivative at X(1) is given in VC(1).
- C IBEG = 2 if second derivative at X(1) is given in VC(1).
- C IBEG = 3 to use the 3-point difference formula for D(1).
- C (Reverts to the default b.c. if N.LT.3 .)
- C IBEG = 4 to use the 4-point difference formula for D(1).
- C (Reverts to the default b.c. if N.LT.4 .)
- C IBEG = 5 to set D(1) so that the second derivative is con-
- C tinuous at X(2). (Reverts to the default b.c. if N.LT.4.)
- C This option is somewhat analogous to the "not a knot"
- C boundary condition provided by DPCHSP.
- C
- C NOTES (IBEG):
- C 1. An error return is taken if ABS(IBEG).GT.5 .
- C 2. Only in case IBEG.LE.0 is it guaranteed that the
- C interpolant will be monotonic in the first interval.
- C If the returned value of D(1) lies between zero and
- C 3*SLOPE(1), the interpolant will be monotonic. This
- C is **NOT** checked if IBEG.GT.0 .
- C 3. If IBEG.LT.0 and D(1) had to be changed to achieve mono-
- C tonicity, a warning error is returned.
- C
- C IEND may take on the same values as IBEG, but applied to
- C derivative at X(N). In case IEND = 1 or 2, the value is
- C given in VC(2).
- C
- C NOTES (IEND):
- C 1. An error return is taken if ABS(IEND).GT.5 .
- C 2. Only in case IEND.LE.0 is it guaranteed that the
- C interpolant will be monotonic in the last interval.
- C If the returned value of D(1+(N-1)*INCFD) lies between
- C zero and 3*SLOPE(N-1), the interpolant will be monotonic.
- C This is **NOT** checked if IEND.GT.0 .
- C 3. If IEND.LT.0 and D(1+(N-1)*INCFD) had to be changed to
- C achieve monotonicity, a warning error is returned.
- C
- C VC -- (input) real*8 array of length 2 specifying desired boundary
- C values, as indicated above.
- C VC(1) need be set only if IC(1) = 1 or 2 .
- C VC(2) need be set only if IC(2) = 1 or 2 .
- C
- C SWITCH -- (input) indicates desired treatment of points where
- C direction of monotonicity switches:
- C Set SWITCH to zero if interpolant is required to be mono-
- C tonic in each interval, regardless of monotonicity of data.
- C NOTES:
- C 1. This will cause D to be set to zero at all switch
- C points, thus forcing extrema there.
- C 2. The result of using this option with the default boun-
- C dary conditions will be identical to using DPCHIM, but
- C will generally cost more compute time.
- C This option is provided only to facilitate comparison
- C of different switch and/or boundary conditions.
- C Set SWITCH nonzero to use a formula based on the 3-point
- C difference formula in the vicinity of switch points.
- C If SWITCH is positive, the interpolant on each interval
- C containing an extremum is controlled to not deviate from
- C the data by more than SWITCH*DFLOC, where DFLOC is the
- C maximum of the change of F on this interval and its two
- C immediate neighbors.
- C If SWITCH is negative, no such control is to be imposed.
- C
- C N -- (input) number of data points. (Error return if N.LT.2 .)
- C
- C X -- (input) real*8 array of independent variable values. The
- C elements of X must be strictly increasing:
- C X(I-1) .LT. X(I), I = 2(1)N.
- C (Error return if not.)
- C
- C F -- (input) real*8 array of dependent variable values to be
- C interpolated. F(1+(I-1)*INCFD) is value corresponding to
- C X(I).
- C
- C D -- (output) real*8 array of derivative values at the data
- C points. These values will determine a monotone cubic
- C Hermite function on each subinterval on which the data
- C are monotonic, except possibly adjacent to switches in
- C monotonicity. The value corresponding to X(I) is stored in
- C D(1+(I-1)*INCFD), I=1(1)N.
- C No other entries in D are changed.
- C
- C INCFD -- (input) increment between successive values in F and D.
- C This argument is provided primarily for 2-D applications.
- C (Error return if INCFD.LT.1 .)
- C
- C WK -- (scratch) real*8 array of working storage. The user may
- C wish to know that the returned values are:
- C WK(I) = H(I) = X(I+1) - X(I) ;
- C WK(N-1+I) = SLOPE(I) = (F(1,I+1) - F(1,I)) / H(I)
- C for I = 1(1)N-1.
- C
- C NWK -- (input) length of work array.
- C (Error return if NWK.LT.2*(N-1) .)
- C
- C IERR -- (output) error flag.
- C Normal return:
- C IERR = 0 (no errors).
- C Warning errors:
- C IERR = 1 if IBEG.LT.0 and D(1) had to be adjusted for
- C monotonicity.
- C IERR = 2 if IEND.LT.0 and D(1+(N-1)*INCFD) had to be
- C adjusted for monotonicity.
- C IERR = 3 if both of the above are true.
- C "Recoverable" errors:
- C IERR = -1 if N.LT.2 .
- C IERR = -2 if INCFD.LT.1 .
- C IERR = -3 if the X-array is not strictly increasing.
- C IERR = -4 if ABS(IBEG).GT.5 .
- C IERR = -5 if ABS(IEND).GT.5 .
- C IERR = -6 if both of the above are true.
- C IERR = -7 if NWK.LT.2*(N-1) .
- C (The D-array has not been changed in any of these cases.)
- C NOTE: The above errors are checked in the order listed,
- C and following arguments have **NOT** been validated.
- C
- C***REFERENCES 1. F. N. Fritsch, Piecewise Cubic Hermite Interpolation
- C Package, Report UCRL-87285, Lawrence Livermore Natio-
- C nal Laboratory, July 1982. [Poster presented at the
- C SIAM 30th Anniversary Meeting, 19-23 July 1982.]
- C 2. F. N. Fritsch and J. Butland, A method for construc-
- C ting local monotone piecewise cubic interpolants, SIAM
- C Journal on Scientific and Statistical Computing 5, 2
- C (June 1984), pp. 300-304.
- C 3. F. N. Fritsch and R. E. Carlson, Monotone piecewise
- C cubic interpolation, SIAM Journal on Numerical Ana-
- C lysis 17, 2 (April 1980), pp. 238-246.
- C***ROUTINES CALLED DPCHCE, DPCHCI, DPCHCS, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 820218 DATE WRITTEN
- C 820804 Converted to SLATEC library version.
- C 870707 Corrected XERROR calls for d.p. name(s).
- C 870813 Updated Reference 2.
- C 890206 Corrected XERROR calls.
- C 890411 Added SAVE statements (Vers. 3.2).
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890703 Corrected category record. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891006 Cosmetic changes to prologue. (WRB)
- C 891006 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 920429 Revised format and order of references. (WRB,FNF)
- C***END PROLOGUE DPCHIC
- C Programming notes:
- C
- C To produce a single precision version, simply:
- C a. Change DPCHIC to PCHIC wherever it occurs,
- C b. Change DPCHCE to PCHCE wherever it occurs,
- C c. Change DPCHCI to PCHCI wherever it occurs,
- C d. Change DPCHCS to PCHCS wherever it occurs,
- C e. Change the double precision declarations to real, and
- C f. Change the constant ZERO to single precision.
- C
- C DECLARE ARGUMENTS.
- C
- INTEGER IC(2), N, INCFD, NWK, IERR
- DOUBLE PRECISION VC(2), SWITCH, X(*), F(INCFD,*), D(INCFD,*),
- * WK(NWK)
- C
- C DECLARE LOCAL VARIABLES.
- C
- INTEGER I, IBEG, IEND, NLESS1
- DOUBLE PRECISION ZERO
- SAVE ZERO
- DATA ZERO /0.D0/
- C
- C VALIDITY-CHECK ARGUMENTS.
- C
- C***FIRST EXECUTABLE STATEMENT DPCHIC
- IF ( N.LT.2 ) GO TO 5001
- IF ( INCFD.LT.1 ) GO TO 5002
- DO 1 I = 2, N
- IF ( X(I).LE.X(I-1) ) GO TO 5003
- 1 CONTINUE
- C
- IBEG = IC(1)
- IEND = IC(2)
- IERR = 0
- IF (ABS(IBEG) .GT. 5) IERR = IERR - 1
- IF (ABS(IEND) .GT. 5) IERR = IERR - 2
- IF (IERR .LT. 0) GO TO 5004
- C
- C FUNCTION DEFINITION IS OK -- GO ON.
- C
- NLESS1 = N - 1
- IF ( NWK .LT. 2*NLESS1 ) GO TO 5007
- C
- C SET UP H AND SLOPE ARRAYS.
- C
- DO 20 I = 1, NLESS1
- WK(I) = X(I+1) - X(I)
- WK(NLESS1+I) = (F(1,I+1) - F(1,I)) / WK(I)
- 20 CONTINUE
- C
- C SPECIAL CASE N=2 -- USE LINEAR INTERPOLATION.
- C
- IF (NLESS1 .GT. 1) GO TO 1000
- D(1,1) = WK(2)
- D(1,N) = WK(2)
- GO TO 3000
- C
- C NORMAL CASE (N .GE. 3) .
- C
- 1000 CONTINUE
- C
- C SET INTERIOR DERIVATIVES AND DEFAULT END CONDITIONS.
- C
- C --------------------------------------
- CALL DPCHCI (N, WK(1), WK(N), D, INCFD)
- C --------------------------------------
- C
- C SET DERIVATIVES AT POINTS WHERE MONOTONICITY SWITCHES DIRECTION.
- C
- IF (SWITCH .EQ. ZERO) GO TO 3000
- C ----------------------------------------------------
- CALL DPCHCS (SWITCH, N, WK(1), WK(N), D, INCFD, IERR)
- C ----------------------------------------------------
- IF (IERR .NE. 0) GO TO 5008
- C
- C SET END CONDITIONS.
- C
- 3000 CONTINUE
- IF ( (IBEG.EQ.0) .AND. (IEND.EQ.0) ) GO TO 5000
- C -------------------------------------------------------
- CALL DPCHCE (IC, VC, N, X, WK(1), WK(N), D, INCFD, IERR)
- C -------------------------------------------------------
- IF (IERR .LT. 0) GO TO 5009
- C
- C NORMAL RETURN.
- C
- 5000 CONTINUE
- RETURN
- C
- C ERROR RETURNS.
- C
- 5001 CONTINUE
- C N.LT.2 RETURN.
- IERR = -1
- CALL XERMSG ('SLATEC', 'DPCHIC',
- + 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
- RETURN
- C
- 5002 CONTINUE
- C INCFD.LT.1 RETURN.
- IERR = -2
- CALL XERMSG ('SLATEC', 'DPCHIC', 'INCREMENT LESS THAN ONE', IERR,
- + 1)
- RETURN
- C
- 5003 CONTINUE
- C X-ARRAY NOT STRICTLY INCREASING.
- IERR = -3
- CALL XERMSG ('SLATEC', 'DPCHIC',
- + 'X-ARRAY NOT STRICTLY INCREASING', IERR, 1)
- RETURN
- C
- 5004 CONTINUE
- C IC OUT OF RANGE RETURN.
- IERR = IERR - 3
- CALL XERMSG ('SLATEC', 'DPCHIC', 'IC OUT OF RANGE', IERR, 1)
- RETURN
- C
- 5007 CONTINUE
- C NWK .LT. 2*(N-1) RETURN.
- IERR = -7
- CALL XERMSG ('SLATEC', 'DPCHIC', 'WORK ARRAY TOO SMALL', IERR, 1)
- RETURN
- C
- 5008 CONTINUE
- C ERROR RETURN FROM DPCHCS.
- IERR = -8
- CALL XERMSG ('SLATEC', 'DPCHIC', 'ERROR RETURN FROM DPCHCS',
- + IERR, 1)
- RETURN
- C
- 5009 CONTINUE
- C ERROR RETURN FROM DPCHCE.
- C *** THIS CASE SHOULD NEVER OCCUR ***
- IERR = -9
- CALL XERMSG ('SLATEC', 'DPCHIC', 'ERROR RETURN FROM DPCHCE',
- + IERR, 1)
- RETURN
- C------------- LAST LINE OF DPCHIC FOLLOWS -----------------------------
- END
|