dpchsp.f 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. *DECK DPCHSP
  2. SUBROUTINE DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
  3. C***BEGIN PROLOGUE DPCHSP
  4. C***PURPOSE Set derivatives needed to determine the Hermite represen-
  5. C tation of the cubic spline interpolant to given data, with
  6. C specified boundary conditions.
  7. C***LIBRARY SLATEC (PCHIP)
  8. C***CATEGORY E1A
  9. C***TYPE DOUBLE PRECISION (PCHSP-S, DPCHSP-D)
  10. C***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
  11. C PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
  12. C***AUTHOR Fritsch, F. N., (LLNL)
  13. C Lawrence Livermore National Laboratory
  14. C P.O. Box 808 (L-316)
  15. C Livermore, CA 94550
  16. C FTS 532-4275, (510) 422-4275
  17. C***DESCRIPTION
  18. C
  19. C DPCHSP: Piecewise Cubic Hermite Spline
  20. C
  21. C Computes the Hermite representation of the cubic spline inter-
  22. C polant to the data given in X and F satisfying the boundary
  23. C conditions specified by IC and VC.
  24. C
  25. C To facilitate two-dimensional applications, includes an increment
  26. C between successive values of the F- and D-arrays.
  27. C
  28. C The resulting piecewise cubic Hermite function may be evaluated
  29. C by DPCHFE or DPCHFD.
  30. C
  31. C NOTE: This is a modified version of C. de Boor's cubic spline
  32. C routine CUBSPL.
  33. C
  34. C ----------------------------------------------------------------------
  35. C
  36. C Calling sequence:
  37. C
  38. C PARAMETER (INCFD = ...)
  39. C INTEGER IC(2), N, NWK, IERR
  40. C DOUBLE PRECISION VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
  41. C
  42. C CALL DPCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
  43. C
  44. C Parameters:
  45. C
  46. C IC -- (input) integer array of length 2 specifying desired
  47. C boundary conditions:
  48. C IC(1) = IBEG, desired condition at beginning of data.
  49. C IC(2) = IEND, desired condition at end of data.
  50. C
  51. C IBEG = 0 to set D(1) so that the third derivative is con-
  52. C tinuous at X(2). This is the "not a knot" condition
  53. C provided by de Boor's cubic spline routine CUBSPL.
  54. C < This is the default boundary condition. >
  55. C IBEG = 1 if first derivative at X(1) is given in VC(1).
  56. C IBEG = 2 if second derivative at X(1) is given in VC(1).
  57. C IBEG = 3 to use the 3-point difference formula for D(1).
  58. C (Reverts to the default b.c. if N.LT.3 .)
  59. C IBEG = 4 to use the 4-point difference formula for D(1).
  60. C (Reverts to the default b.c. if N.LT.4 .)
  61. C NOTES:
  62. C 1. An error return is taken if IBEG is out of range.
  63. C 2. For the "natural" boundary condition, use IBEG=2 and
  64. C VC(1)=0.
  65. C
  66. C IEND may take on the same values as IBEG, but applied to
  67. C derivative at X(N). In case IEND = 1 or 2, the value is
  68. C given in VC(2).
  69. C
  70. C NOTES:
  71. C 1. An error return is taken if IEND is out of range.
  72. C 2. For the "natural" boundary condition, use IEND=2 and
  73. C VC(2)=0.
  74. C
  75. C VC -- (input) real*8 array of length 2 specifying desired boundary
  76. C values, as indicated above.
  77. C VC(1) need be set only if IC(1) = 1 or 2 .
  78. C VC(2) need be set only if IC(2) = 1 or 2 .
  79. C
  80. C N -- (input) number of data points. (Error return if N.LT.2 .)
  81. C
  82. C X -- (input) real*8 array of independent variable values. The
  83. C elements of X must be strictly increasing:
  84. C X(I-1) .LT. X(I), I = 2(1)N.
  85. C (Error return if not.)
  86. C
  87. C F -- (input) real*8 array of dependent variable values to be
  88. C interpolated. F(1+(I-1)*INCFD) is value corresponding to
  89. C X(I).
  90. C
  91. C D -- (output) real*8 array of derivative values at the data
  92. C points. These values will determine the cubic spline
  93. C interpolant with the requested boundary conditions.
  94. C The value corresponding to X(I) is stored in
  95. C D(1+(I-1)*INCFD), I=1(1)N.
  96. C No other entries in D are changed.
  97. C
  98. C INCFD -- (input) increment between successive values in F and D.
  99. C This argument is provided primarily for 2-D applications.
  100. C (Error return if INCFD.LT.1 .)
  101. C
  102. C WK -- (scratch) real*8 array of working storage.
  103. C
  104. C NWK -- (input) length of work array.
  105. C (Error return if NWK.LT.2*N .)
  106. C
  107. C IERR -- (output) error flag.
  108. C Normal return:
  109. C IERR = 0 (no errors).
  110. C "Recoverable" errors:
  111. C IERR = -1 if N.LT.2 .
  112. C IERR = -2 if INCFD.LT.1 .
  113. C IERR = -3 if the X-array is not strictly increasing.
  114. C IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
  115. C IERR = -5 if IEND.LT.0 of IEND.GT.4 .
  116. C IERR = -6 if both of the above are true.
  117. C IERR = -7 if NWK is too small.
  118. C NOTE: The above errors are checked in the order listed,
  119. C and following arguments have **NOT** been validated.
  120. C (The D-array has not been changed in any of these cases.)
  121. C IERR = -8 in case of trouble solving the linear system
  122. C for the interior derivative values.
  123. C (The D-array may have been changed in this case.)
  124. C ( Do **NOT** use it! )
  125. C
  126. C***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
  127. C Verlag, New York, 1978, pp. 53-59.
  128. C***ROUTINES CALLED DPCHDF, XERMSG
  129. C***REVISION HISTORY (YYMMDD)
  130. C 820503 DATE WRITTEN
  131. C 820804 Converted to SLATEC library version.
  132. C 870707 Corrected XERROR calls for d.p. name(s).
  133. C 890206 Corrected XERROR calls.
  134. C 890411 Added SAVE statements (Vers. 3.2).
  135. C 890703 Corrected category record. (WRB)
  136. C 890831 Modified array declarations. (WRB)
  137. C 891006 Cosmetic changes to prologue. (WRB)
  138. C 891006 REVISION DATE from Version 3.2
  139. C 891214 Prologue converted to Version 4.0 format. (BAB)
  140. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  141. C 920429 Revised format and order of references. (WRB,FNF)
  142. C***END PROLOGUE DPCHSP
  143. C Programming notes:
  144. C
  145. C To produce a single precision version, simply:
  146. C a. Change DPCHSP to PCHSP wherever it occurs,
  147. C b. Change the double precision declarations to real, and
  148. C c. Change the constants ZERO, HALF, ... to single precision.
  149. C
  150. C DECLARE ARGUMENTS.
  151. C
  152. INTEGER IC(2), N, INCFD, NWK, IERR
  153. DOUBLE PRECISION VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*)
  154. C
  155. C DECLARE LOCAL VARIABLES.
  156. C
  157. INTEGER IBEG, IEND, INDEX, J, NM1
  158. DOUBLE PRECISION G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4),
  159. * ZERO
  160. SAVE ZERO, HALF, ONE, TWO, THREE
  161. DOUBLE PRECISION DPCHDF
  162. C
  163. DATA ZERO /0.D0/, HALF/.5D0/, ONE/1.D0/, TWO/2.D0/, THREE/3.D0/
  164. C
  165. C VALIDITY-CHECK ARGUMENTS.
  166. C
  167. C***FIRST EXECUTABLE STATEMENT DPCHSP
  168. IF ( N.LT.2 ) GO TO 5001
  169. IF ( INCFD.LT.1 ) GO TO 5002
  170. DO 1 J = 2, N
  171. IF ( X(J).LE.X(J-1) ) GO TO 5003
  172. 1 CONTINUE
  173. C
  174. IBEG = IC(1)
  175. IEND = IC(2)
  176. IERR = 0
  177. IF ( (IBEG.LT.0).OR.(IBEG.GT.4) ) IERR = IERR - 1
  178. IF ( (IEND.LT.0).OR.(IEND.GT.4) ) IERR = IERR - 2
  179. IF ( IERR.LT.0 ) GO TO 5004
  180. C
  181. C FUNCTION DEFINITION IS OK -- GO ON.
  182. C
  183. IF ( NWK .LT. 2*N ) GO TO 5007
  184. C
  185. C COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
  186. C COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
  187. DO 5 J=2,N
  188. WK(1,J) = X(J) - X(J-1)
  189. WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J)
  190. 5 CONTINUE
  191. C
  192. C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
  193. C
  194. IF ( IBEG.GT.N ) IBEG = 0
  195. IF ( IEND.GT.N ) IEND = 0
  196. C
  197. C SET UP FOR BOUNDARY CONDITIONS.
  198. C
  199. IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) ) THEN
  200. D(1,1) = VC(1)
  201. ELSE IF (IBEG .GT. 2) THEN
  202. C PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
  203. DO 10 J = 1, IBEG
  204. INDEX = IBEG-J+1
  205. C INDEX RUNS FROM IBEG DOWN TO 1.
  206. XTEMP(J) = X(INDEX)
  207. IF (J .LT. IBEG) STEMP(J) = WK(2,INDEX)
  208. 10 CONTINUE
  209. C --------------------------------
  210. D(1,1) = DPCHDF (IBEG, XTEMP, STEMP, IERR)
  211. C --------------------------------
  212. IF (IERR .NE. 0) GO TO 5009
  213. IBEG = 1
  214. ENDIF
  215. C
  216. IF ( (IEND.EQ.1).OR.(IEND.EQ.2) ) THEN
  217. D(1,N) = VC(2)
  218. ELSE IF (IEND .GT. 2) THEN
  219. C PICK UP LAST IEND POINTS.
  220. DO 15 J = 1, IEND
  221. INDEX = N-IEND+J
  222. C INDEX RUNS FROM N+1-IEND UP TO N.
  223. XTEMP(J) = X(INDEX)
  224. IF (J .LT. IEND) STEMP(J) = WK(2,INDEX+1)
  225. 15 CONTINUE
  226. C --------------------------------
  227. D(1,N) = DPCHDF (IEND, XTEMP, STEMP, IERR)
  228. C --------------------------------
  229. IF (IERR .NE. 0) GO TO 5009
  230. IEND = 1
  231. ENDIF
  232. C
  233. C --------------------( BEGIN CODING FROM CUBSPL )--------------------
  234. C
  235. C **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
  236. C F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
  237. C INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
  238. C WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
  239. C
  240. C CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
  241. C WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
  242. C
  243. IF (IBEG .EQ. 0) THEN
  244. IF (N .EQ. 2) THEN
  245. C NO CONDITION AT LEFT END AND N = 2.
  246. WK(2,1) = ONE
  247. WK(1,1) = ONE
  248. D(1,1) = TWO*WK(2,2)
  249. ELSE
  250. C NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
  251. WK(2,1) = WK(1,3)
  252. WK(1,1) = WK(1,2) + WK(1,3)
  253. D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3)
  254. * + WK(1,2)**2*WK(2,3)) / WK(1,1)
  255. ENDIF
  256. ELSE IF (IBEG .EQ. 1) THEN
  257. C SLOPE PRESCRIBED AT LEFT END.
  258. WK(2,1) = ONE
  259. WK(1,1) = ZERO
  260. ELSE
  261. C SECOND DERIVATIVE PRESCRIBED AT LEFT END.
  262. WK(2,1) = TWO
  263. WK(1,1) = ONE
  264. D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1)
  265. ENDIF
  266. C
  267. C IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
  268. C CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
  269. C EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
  270. C
  271. NM1 = N-1
  272. IF (NM1 .GT. 1) THEN
  273. DO 20 J=2,NM1
  274. IF (WK(2,J-1) .EQ. ZERO) GO TO 5008
  275. G = -WK(1,J+1)/WK(2,J-1)
  276. D(1,J) = G*D(1,J-1)
  277. * + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J))
  278. WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1))
  279. 20 CONTINUE
  280. ENDIF
  281. C
  282. C CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
  283. C (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
  284. C
  285. C IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
  286. C SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
  287. C AT THIS POINT.
  288. IF (IEND .EQ. 1) GO TO 30
  289. C
  290. IF (IEND .EQ. 0) THEN
  291. IF (N.EQ.2 .AND. IBEG.EQ.0) THEN
  292. C NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
  293. D(1,2) = WK(2,2)
  294. GO TO 30
  295. ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0)) THEN
  296. C EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
  297. C NOT-A-KNOT AT LEFT END POINT).
  298. D(1,N) = TWO*WK(2,N)
  299. WK(2,N) = ONE
  300. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  301. G = -ONE/WK(2,N-1)
  302. ELSE
  303. C NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A-
  304. C KNOT AT LEFT END POINT.
  305. G = WK(1,N-1) + WK(1,N)
  306. C DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
  307. D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1)
  308. * + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G
  309. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  310. G = -G/WK(2,N-1)
  311. WK(2,N) = WK(1,N-1)
  312. ENDIF
  313. ELSE
  314. C SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
  315. D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N)
  316. WK(2,N) = TWO
  317. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  318. G = -ONE/WK(2,N-1)
  319. ENDIF
  320. C
  321. C COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
  322. C
  323. WK(2,N) = G*WK(1,N-1) + WK(2,N)
  324. IF (WK(2,N) .EQ. ZERO) GO TO 5008
  325. D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N)
  326. C
  327. C CARRY OUT BACK SUBSTITUTION
  328. C
  329. 30 CONTINUE
  330. DO 40 J=NM1,1,-1
  331. IF (WK(2,J) .EQ. ZERO) GO TO 5008
  332. D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J)
  333. 40 CONTINUE
  334. C --------------------( END CODING FROM CUBSPL )--------------------
  335. C
  336. C NORMAL RETURN.
  337. C
  338. RETURN
  339. C
  340. C ERROR RETURNS.
  341. C
  342. 5001 CONTINUE
  343. C N.LT.2 RETURN.
  344. IERR = -1
  345. CALL XERMSG ('SLATEC', 'DPCHSP',
  346. + 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
  347. RETURN
  348. C
  349. 5002 CONTINUE
  350. C INCFD.LT.1 RETURN.
  351. IERR = -2
  352. CALL XERMSG ('SLATEC', 'DPCHSP', 'INCREMENT LESS THAN ONE', IERR,
  353. + 1)
  354. RETURN
  355. C
  356. 5003 CONTINUE
  357. C X-ARRAY NOT STRICTLY INCREASING.
  358. IERR = -3
  359. CALL XERMSG ('SLATEC', 'DPCHSP',
  360. + 'X-ARRAY NOT STRICTLY INCREASING', IERR, 1)
  361. RETURN
  362. C
  363. 5004 CONTINUE
  364. C IC OUT OF RANGE RETURN.
  365. IERR = IERR - 3
  366. CALL XERMSG ('SLATEC', 'DPCHSP', 'IC OUT OF RANGE', IERR, 1)
  367. RETURN
  368. C
  369. 5007 CONTINUE
  370. C NWK TOO SMALL RETURN.
  371. IERR = -7
  372. CALL XERMSG ('SLATEC', 'DPCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
  373. RETURN
  374. C
  375. 5008 CONTINUE
  376. C SINGULAR SYSTEM.
  377. C *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES ***
  378. C *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
  379. IERR = -8
  380. CALL XERMSG ('SLATEC', 'DPCHSP', 'SINGULAR LINEAR SYSTEM', IERR,
  381. + 1)
  382. RETURN
  383. C
  384. 5009 CONTINUE
  385. C ERROR RETURN FROM DPCHDF.
  386. C *** THIS CASE SHOULD NEVER OCCUR ***
  387. IERR = -9
  388. CALL XERMSG ('SLATEC', 'DPCHSP', 'ERROR RETURN FROM DPCHDF',
  389. + IERR, 1)
  390. RETURN
  391. C------------- LAST LINE OF DPCHSP FOLLOWS -----------------------------
  392. END