dpoco.f 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. *DECK DPOCO
  2. SUBROUTINE DPOCO (A, LDA, N, RCOND, Z, INFO)
  3. C***BEGIN PROLOGUE DPOCO
  4. C***PURPOSE Factor a real symmetric positive definite matrix
  5. C and estimate the condition of the matrix.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2B1B
  8. C***TYPE DOUBLE PRECISION (SPOCO-S, DPOCO-D, CPOCO-C)
  9. C***KEYWORDS CONDITION NUMBER, LINEAR ALGEBRA, LINPACK,
  10. C MATRIX FACTORIZATION, POSITIVE DEFINITE
  11. C***AUTHOR Moler, C. B., (U. of New Mexico)
  12. C***DESCRIPTION
  13. C
  14. C DPOCO factors a double precision symmetric positive definite
  15. C matrix and estimates the condition of the matrix.
  16. C
  17. C If RCOND is not needed, DPOFA is slightly faster.
  18. C To solve A*X = B , follow DPOCO by DPOSL.
  19. C To compute INVERSE(A)*C , follow DPOCO by DPOSL.
  20. C To compute DETERMINANT(A) , follow DPOCO by DPODI.
  21. C To compute INVERSE(A) , follow DPOCO by DPODI.
  22. C
  23. C On Entry
  24. C
  25. C A DOUBLE PRECISION(LDA, N)
  26. C the symmetric matrix to be factored. Only the
  27. C diagonal and upper triangle are used.
  28. C
  29. C LDA INTEGER
  30. C the leading dimension of the array A .
  31. C
  32. C N INTEGER
  33. C the order of the matrix A .
  34. C
  35. C On Return
  36. C
  37. C A an upper triangular matrix R so that A = TRANS(R)*R
  38. C where TRANS(R) is the transpose.
  39. C The strict lower triangle is unaltered.
  40. C If INFO .NE. 0 , the factorization is not complete.
  41. C
  42. C RCOND DOUBLE PRECISION
  43. C an estimate of the reciprocal condition of A .
  44. C For the system A*X = B , relative perturbations
  45. C in A and B of size EPSILON may cause
  46. C relative perturbations in X of size EPSILON/RCOND .
  47. C If RCOND is so small that the logical expression
  48. C 1.0 + RCOND .EQ. 1.0
  49. C is true, then A may be singular to working
  50. C precision. In particular, RCOND is zero if
  51. C exact singularity is detected or the estimate
  52. C underflows. If INFO .NE. 0 , RCOND is unchanged.
  53. C
  54. C Z DOUBLE PRECISION(N)
  55. C a work vector whose contents are usually unimportant.
  56. C If A is close to a singular matrix, then Z is
  57. C an approximate null vector in the sense that
  58. C NORM(A*Z) = RCOND*NORM(A)*NORM(Z) .
  59. C If INFO .NE. 0 , Z is unchanged.
  60. C
  61. C INFO INTEGER
  62. C = 0 for normal return.
  63. C = K signals an error condition. The leading minor
  64. C of order K is not positive definite.
  65. C
  66. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  67. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  68. C***ROUTINES CALLED DASUM, DAXPY, DDOT, DPOFA, DSCAL
  69. C***REVISION HISTORY (YYMMDD)
  70. C 780814 DATE WRITTEN
  71. C 890531 Changed all specific intrinsics to generic. (WRB)
  72. C 890831 Modified array declarations. (WRB)
  73. C 890831 REVISION DATE from Version 3.2
  74. C 891214 Prologue converted to Version 4.0 format. (BAB)
  75. C 900326 Removed duplicate information from DESCRIPTION section.
  76. C (WRB)
  77. C 920501 Reformatted the REFERENCES section. (WRB)
  78. C***END PROLOGUE DPOCO
  79. INTEGER LDA,N,INFO
  80. DOUBLE PRECISION A(LDA,*),Z(*)
  81. DOUBLE PRECISION RCOND
  82. C
  83. DOUBLE PRECISION DDOT,EK,T,WK,WKM
  84. DOUBLE PRECISION ANORM,S,DASUM,SM,YNORM
  85. INTEGER I,J,JM1,K,KB,KP1
  86. C
  87. C FIND NORM OF A USING ONLY UPPER HALF
  88. C
  89. C***FIRST EXECUTABLE STATEMENT DPOCO
  90. DO 30 J = 1, N
  91. Z(J) = DASUM(J,A(1,J),1)
  92. JM1 = J - 1
  93. IF (JM1 .LT. 1) GO TO 20
  94. DO 10 I = 1, JM1
  95. Z(I) = Z(I) + ABS(A(I,J))
  96. 10 CONTINUE
  97. 20 CONTINUE
  98. 30 CONTINUE
  99. ANORM = 0.0D0
  100. DO 40 J = 1, N
  101. ANORM = MAX(ANORM,Z(J))
  102. 40 CONTINUE
  103. C
  104. C FACTOR
  105. C
  106. CALL DPOFA(A,LDA,N,INFO)
  107. IF (INFO .NE. 0) GO TO 180
  108. C
  109. C RCOND = 1/(NORM(A)*(ESTIMATE OF NORM(INVERSE(A)))) .
  110. C ESTIMATE = NORM(Z)/NORM(Y) WHERE A*Z = Y AND A*Y = E .
  111. C THE COMPONENTS OF E ARE CHOSEN TO CAUSE MAXIMUM LOCAL
  112. C GROWTH IN THE ELEMENTS OF W WHERE TRANS(R)*W = E .
  113. C THE VECTORS ARE FREQUENTLY RESCALED TO AVOID OVERFLOW.
  114. C
  115. C SOLVE TRANS(R)*W = E
  116. C
  117. EK = 1.0D0
  118. DO 50 J = 1, N
  119. Z(J) = 0.0D0
  120. 50 CONTINUE
  121. DO 110 K = 1, N
  122. IF (Z(K) .NE. 0.0D0) EK = SIGN(EK,-Z(K))
  123. IF (ABS(EK-Z(K)) .LE. A(K,K)) GO TO 60
  124. S = A(K,K)/ABS(EK-Z(K))
  125. CALL DSCAL(N,S,Z,1)
  126. EK = S*EK
  127. 60 CONTINUE
  128. WK = EK - Z(K)
  129. WKM = -EK - Z(K)
  130. S = ABS(WK)
  131. SM = ABS(WKM)
  132. WK = WK/A(K,K)
  133. WKM = WKM/A(K,K)
  134. KP1 = K + 1
  135. IF (KP1 .GT. N) GO TO 100
  136. DO 70 J = KP1, N
  137. SM = SM + ABS(Z(J)+WKM*A(K,J))
  138. Z(J) = Z(J) + WK*A(K,J)
  139. S = S + ABS(Z(J))
  140. 70 CONTINUE
  141. IF (S .GE. SM) GO TO 90
  142. T = WKM - WK
  143. WK = WKM
  144. DO 80 J = KP1, N
  145. Z(J) = Z(J) + T*A(K,J)
  146. 80 CONTINUE
  147. 90 CONTINUE
  148. 100 CONTINUE
  149. Z(K) = WK
  150. 110 CONTINUE
  151. S = 1.0D0/DASUM(N,Z,1)
  152. CALL DSCAL(N,S,Z,1)
  153. C
  154. C SOLVE R*Y = W
  155. C
  156. DO 130 KB = 1, N
  157. K = N + 1 - KB
  158. IF (ABS(Z(K)) .LE. A(K,K)) GO TO 120
  159. S = A(K,K)/ABS(Z(K))
  160. CALL DSCAL(N,S,Z,1)
  161. 120 CONTINUE
  162. Z(K) = Z(K)/A(K,K)
  163. T = -Z(K)
  164. CALL DAXPY(K-1,T,A(1,K),1,Z(1),1)
  165. 130 CONTINUE
  166. S = 1.0D0/DASUM(N,Z,1)
  167. CALL DSCAL(N,S,Z,1)
  168. C
  169. YNORM = 1.0D0
  170. C
  171. C SOLVE TRANS(R)*V = Y
  172. C
  173. DO 150 K = 1, N
  174. Z(K) = Z(K) - DDOT(K-1,A(1,K),1,Z(1),1)
  175. IF (ABS(Z(K)) .LE. A(K,K)) GO TO 140
  176. S = A(K,K)/ABS(Z(K))
  177. CALL DSCAL(N,S,Z,1)
  178. YNORM = S*YNORM
  179. 140 CONTINUE
  180. Z(K) = Z(K)/A(K,K)
  181. 150 CONTINUE
  182. S = 1.0D0/DASUM(N,Z,1)
  183. CALL DSCAL(N,S,Z,1)
  184. YNORM = S*YNORM
  185. C
  186. C SOLVE R*Z = V
  187. C
  188. DO 170 KB = 1, N
  189. K = N + 1 - KB
  190. IF (ABS(Z(K)) .LE. A(K,K)) GO TO 160
  191. S = A(K,K)/ABS(Z(K))
  192. CALL DSCAL(N,S,Z,1)
  193. YNORM = S*YNORM
  194. 160 CONTINUE
  195. Z(K) = Z(K)/A(K,K)
  196. T = -Z(K)
  197. CALL DAXPY(K-1,T,A(1,K),1,Z(1),1)
  198. 170 CONTINUE
  199. C MAKE ZNORM = 1.0
  200. S = 1.0D0/DASUM(N,Z,1)
  201. CALL DSCAL(N,S,Z,1)
  202. YNORM = S*YNORM
  203. C
  204. IF (ANORM .NE. 0.0D0) RCOND = YNORM/ANORM
  205. IF (ANORM .EQ. 0.0D0) RCOND = 0.0D0
  206. 180 CONTINUE
  207. RETURN
  208. END