123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- *DECK DPSIFN
- SUBROUTINE DPSIFN (X, N, KODE, M, ANS, NZ, IERR)
- C***BEGIN PROLOGUE DPSIFN
- C***PURPOSE Compute derivatives of the Psi function.
- C***LIBRARY SLATEC
- C***CATEGORY C7C
- C***TYPE DOUBLE PRECISION (PSIFN-S, DPSIFN-D)
- C***KEYWORDS DERIVATIVES OF THE GAMMA FUNCTION, POLYGAMMA FUNCTION,
- C PSI FUNCTION
- C***AUTHOR Amos, D. E., (SNLA)
- C***DESCRIPTION
- C
- C The following definitions are used in DPSIFN:
- C
- C Definition 1
- C PSI(X) = d/dx (ln(GAMMA(X)), the first derivative of
- C the log GAMMA function.
- C Definition 2
- C K K
- C PSI(K,X) = d /dx (PSI(X)), the K-th derivative of PSI(X).
- C ___________________________________________________________________
- C DPSIFN computes a sequence of SCALED derivatives of
- C the PSI function; i.e. for fixed X and M it computes
- C the M-member sequence
- C
- C ((-1)**(K+1)/GAMMA(K+1))*PSI(K,X)
- C for K = N,...,N+M-1
- C
- C where PSI(K,X) is as defined above. For KODE=1, DPSIFN returns
- C the scaled derivatives as described. KODE=2 is operative only
- C when K=0 and in that case DPSIFN returns -PSI(X) + LN(X). That
- C is, the logarithmic behavior for large X is removed when KODE=2
- C and K=0. When sums or differences of PSI functions are computed
- C the logarithmic terms can be combined analytically and computed
- C separately to help retain significant digits.
- C
- C Note that CALL DPSIFN(X,0,1,1,ANS) results in
- C ANS = -PSI(X)
- C
- C Input X is DOUBLE PRECISION
- C X - Argument, X .gt. 0.0D0
- C N - First member of the sequence, 0 .le. N .le. 100
- C N=0 gives ANS(1) = -PSI(X) for KODE=1
- C -PSI(X)+LN(X) for KODE=2
- C KODE - Selection parameter
- C KODE=1 returns scaled derivatives of the PSI
- C function.
- C KODE=2 returns scaled derivatives of the PSI
- C function EXCEPT when N=0. In this case,
- C ANS(1) = -PSI(X) + LN(X) is returned.
- C M - Number of members of the sequence, M.ge.1
- C
- C Output ANS is DOUBLE PRECISION
- C ANS - A vector of length at least M whose first M
- C components contain the sequence of derivatives
- C scaled according to KODE.
- C NZ - Underflow flag
- C NZ.eq.0, A normal return
- C NZ.ne.0, Underflow, last NZ components of ANS are
- C set to zero, ANS(M-K+1)=0.0, K=1,...,NZ
- C IERR - Error flag
- C IERR=0, A normal return, computation completed
- C IERR=1, Input error, no computation
- C IERR=2, Overflow, X too small or N+M-1 too
- C large or both
- C IERR=3, Error, N too large. Dimensioned
- C array TRMR(NMAX) is not large enough for N
- C
- C The nominal computational accuracy is the maximum of unit
- C roundoff (=D1MACH(4)) and 1.0D-18 since critical constants
- C are given to only 18 digits.
- C
- C PSIFN is the single precision version of DPSIFN.
- C
- C *Long Description:
- C
- C The basic method of evaluation is the asymptotic expansion
- C for large X.ge.XMIN followed by backward recursion on a two
- C term recursion relation
- C
- C W(X+1) + X**(-N-1) = W(X).
- C
- C This is supplemented by a series
- C
- C SUM( (X+K)**(-N-1) , K=0,1,2,... )
- C
- C which converges rapidly for large N. Both XMIN and the
- C number of terms of the series are calculated from the unit
- C roundoff of the machine environment.
- C
- C***REFERENCES Handbook of Mathematical Functions, National Bureau
- C of Standards Applied Mathematics Series 55, edited
- C by M. Abramowitz and I. A. Stegun, equations 6.3.5,
- C 6.3.18, 6.4.6, 6.4.9 and 6.4.10, pp.258-260, 1964.
- C D. E. Amos, A portable Fortran subroutine for
- C derivatives of the Psi function, Algorithm 610, ACM
- C Transactions on Mathematical Software 9, 4 (1983),
- C pp. 494-502.
- C***ROUTINES CALLED D1MACH, I1MACH
- C***REVISION HISTORY (YYMMDD)
- C 820601 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890911 Removed unnecessary intrinsics. (WRB)
- C 891006 Cosmetic changes to prologue. (WRB)
- C 891006 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DPSIFN
- INTEGER I, IERR, J, K, KODE, M, MM, MX, N, NMAX, NN, NP, NX, NZ,
- * FN
- INTEGER I1MACH
- DOUBLE PRECISION ANS, ARG, B, DEN, ELIM, EPS, FLN,
- * FX, RLN, RXSQ, R1M4, R1M5, S, SLOPE, T, TA, TK, TOL, TOLS, TRM,
- * TRMR, TSS, TST, TT, T1, T2, WDTOL, X, XDMLN, XDMY, XINC, XLN,
- * XM, XMIN, XQ, YINT
- DOUBLE PRECISION D1MACH
- DIMENSION B(22), TRM(22), TRMR(100), ANS(*)
- SAVE NMAX, B
- DATA NMAX /100/
- C-----------------------------------------------------------------------
- C BERNOULLI NUMBERS
- C-----------------------------------------------------------------------
- DATA B(1), B(2), B(3), B(4), B(5), B(6), B(7), B(8), B(9), B(10),
- * B(11), B(12), B(13), B(14), B(15), B(16), B(17), B(18), B(19),
- * B(20), B(21), B(22) /1.00000000000000000D+00,
- * -5.00000000000000000D-01,1.66666666666666667D-01,
- * -3.33333333333333333D-02,2.38095238095238095D-02,
- * -3.33333333333333333D-02,7.57575757575757576D-02,
- * -2.53113553113553114D-01,1.16666666666666667D+00,
- * -7.09215686274509804D+00,5.49711779448621554D+01,
- * -5.29124242424242424D+02,6.19212318840579710D+03,
- * -8.65802531135531136D+04,1.42551716666666667D+06,
- * -2.72982310678160920D+07,6.01580873900642368D+08,
- * -1.51163157670921569D+10,4.29614643061166667D+11,
- * -1.37116552050883328D+13,4.88332318973593167D+14,
- * -1.92965793419400681D+16/
- C
- C***FIRST EXECUTABLE STATEMENT DPSIFN
- IERR = 0
- NZ=0
- IF (X.LE.0.0D0) IERR=1
- IF (N.LT.0) IERR=1
- IF (KODE.LT.1 .OR. KODE.GT.2) IERR=1
- IF (M.LT.1) IERR=1
- IF (IERR.NE.0) RETURN
- MM=M
- NX = MIN(-I1MACH(15),I1MACH(16))
- R1M5 = D1MACH(5)
- R1M4 = D1MACH(4)*0.5D0
- WDTOL = MAX(R1M4,0.5D-18)
- C-----------------------------------------------------------------------
- C ELIM = APPROXIMATE EXPONENTIAL OVER AND UNDERFLOW LIMIT
- C-----------------------------------------------------------------------
- ELIM = 2.302D0*(NX*R1M5-3.0D0)
- XLN = LOG(X)
- 41 CONTINUE
- NN = N + MM - 1
- FN = NN
- T = (FN+1)*XLN
- C-----------------------------------------------------------------------
- C OVERFLOW AND UNDERFLOW TEST FOR SMALL AND LARGE X
- C-----------------------------------------------------------------------
- IF (ABS(T).GT.ELIM) GO TO 290
- IF (X.LT.WDTOL) GO TO 260
- C-----------------------------------------------------------------------
- C COMPUTE XMIN AND THE NUMBER OF TERMS OF THE SERIES, FLN+1
- C-----------------------------------------------------------------------
- RLN = R1M5*I1MACH(14)
- RLN = MIN(RLN,18.06D0)
- FLN = MAX(RLN,3.0D0) - 3.0D0
- YINT = 3.50D0 + 0.40D0*FLN
- SLOPE = 0.21D0 + FLN*(0.0006038D0*FLN+0.008677D0)
- XM = YINT + SLOPE*FN
- MX = INT(XM) + 1
- XMIN = MX
- IF (N.EQ.0) GO TO 50
- XM = -2.302D0*RLN - MIN(0.0D0,XLN)
- ARG = XM/N
- ARG = MIN(0.0D0,ARG)
- EPS = EXP(ARG)
- XM = 1.0D0 - EPS
- IF (ABS(ARG).LT.1.0D-3) XM = -ARG
- FLN = X*XM/EPS
- XM = XMIN - X
- IF (XM.GT.7.0D0 .AND. FLN.LT.15.0D0) GO TO 200
- 50 CONTINUE
- XDMY = X
- XDMLN = XLN
- XINC = 0.0D0
- IF (X.GE.XMIN) GO TO 60
- NX = INT(X)
- XINC = XMIN - NX
- XDMY = X + XINC
- XDMLN = LOG(XDMY)
- 60 CONTINUE
- C-----------------------------------------------------------------------
- C GENERATE W(N+MM-1,X) BY THE ASYMPTOTIC EXPANSION
- C-----------------------------------------------------------------------
- T = FN*XDMLN
- T1 = XDMLN + XDMLN
- T2 = T + XDMLN
- TK = MAX(ABS(T),ABS(T1),ABS(T2))
- IF (TK.GT.ELIM) GO TO 380
- TSS = EXP(-T)
- TT = 0.5D0/XDMY
- T1 = TT
- TST = WDTOL*TT
- IF (NN.NE.0) T1 = TT + 1.0D0/FN
- RXSQ = 1.0D0/(XDMY*XDMY)
- TA = 0.5D0*RXSQ
- T = (FN+1)*TA
- S = T*B(3)
- IF (ABS(S).LT.TST) GO TO 80
- TK = 2.0D0
- DO 70 K=4,22
- T = T*((TK+FN+1)/(TK+1.0D0))*((TK+FN)/(TK+2.0D0))*RXSQ
- TRM(K) = T*B(K)
- IF (ABS(TRM(K)).LT.TST) GO TO 80
- S = S + TRM(K)
- TK = TK + 2.0D0
- 70 CONTINUE
- 80 CONTINUE
- S = (S+T1)*TSS
- IF (XINC.EQ.0.0D0) GO TO 100
- C-----------------------------------------------------------------------
- C BACKWARD RECUR FROM XDMY TO X
- C-----------------------------------------------------------------------
- NX = INT(XINC)
- NP = NN + 1
- IF (NX.GT.NMAX) GO TO 390
- IF (NN.EQ.0) GO TO 160
- XM = XINC - 1.0D0
- FX = X + XM
- C-----------------------------------------------------------------------
- C THIS LOOP SHOULD NOT BE CHANGED. FX IS ACCURATE WHEN X IS SMALL
- C-----------------------------------------------------------------------
- DO 90 I=1,NX
- TRMR(I) = FX**(-NP)
- S = S + TRMR(I)
- XM = XM - 1.0D0
- FX = X + XM
- 90 CONTINUE
- 100 CONTINUE
- ANS(MM) = S
- IF (FN.EQ.0) GO TO 180
- C-----------------------------------------------------------------------
- C GENERATE LOWER DERIVATIVES, J.LT.N+MM-1
- C-----------------------------------------------------------------------
- IF (MM.EQ.1) RETURN
- DO 150 J=2,MM
- FN = FN - 1
- TSS = TSS*XDMY
- T1 = TT
- IF (FN.NE.0) T1 = TT + 1.0D0/FN
- T = (FN+1)*TA
- S = T*B(3)
- IF (ABS(S).LT.TST) GO TO 120
- TK = 4 + FN
- DO 110 K=4,22
- TRM(K) = TRM(K)*(FN+1)/TK
- IF (ABS(TRM(K)).LT.TST) GO TO 120
- S = S + TRM(K)
- TK = TK + 2.0D0
- 110 CONTINUE
- 120 CONTINUE
- S = (S+T1)*TSS
- IF (XINC.EQ.0.0D0) GO TO 140
- IF (FN.EQ.0) GO TO 160
- XM = XINC - 1.0D0
- FX = X + XM
- DO 130 I=1,NX
- TRMR(I) = TRMR(I)*FX
- S = S + TRMR(I)
- XM = XM - 1.0D0
- FX = X + XM
- 130 CONTINUE
- 140 CONTINUE
- MX = MM - J + 1
- ANS(MX) = S
- IF (FN.EQ.0) GO TO 180
- 150 CONTINUE
- RETURN
- C-----------------------------------------------------------------------
- C RECURSION FOR N = 0
- C-----------------------------------------------------------------------
- 160 CONTINUE
- DO 170 I=1,NX
- S = S + 1.0D0/(X+NX-I)
- 170 CONTINUE
- 180 CONTINUE
- IF (KODE.EQ.2) GO TO 190
- ANS(1) = S - XDMLN
- RETURN
- 190 CONTINUE
- IF (XDMY.EQ.X) RETURN
- XQ = XDMY/X
- ANS(1) = S - LOG(XQ)
- RETURN
- C-----------------------------------------------------------------------
- C COMPUTE BY SERIES (X+K)**(-(N+1)) , K=0,1,2,...
- C-----------------------------------------------------------------------
- 200 CONTINUE
- NN = INT(FLN) + 1
- NP = N + 1
- T1 = (N+1)*XLN
- T = EXP(-T1)
- S = T
- DEN = X
- DO 210 I=1,NN
- DEN = DEN + 1.0D0
- TRM(I) = DEN**(-NP)
- S = S + TRM(I)
- 210 CONTINUE
- ANS(1) = S
- IF (N.NE.0) GO TO 220
- IF (KODE.EQ.2) ANS(1) = S + XLN
- 220 CONTINUE
- IF (MM.EQ.1) RETURN
- C-----------------------------------------------------------------------
- C GENERATE HIGHER DERIVATIVES, J.GT.N
- C-----------------------------------------------------------------------
- TOL = WDTOL/5.0D0
- DO 250 J=2,MM
- T = T/X
- S = T
- TOLS = T*TOL
- DEN = X
- DO 230 I=1,NN
- DEN = DEN + 1.0D0
- TRM(I) = TRM(I)/DEN
- S = S + TRM(I)
- IF (TRM(I).LT.TOLS) GO TO 240
- 230 CONTINUE
- 240 CONTINUE
- ANS(J) = S
- 250 CONTINUE
- RETURN
- C-----------------------------------------------------------------------
- C SMALL X.LT.UNIT ROUND OFF
- C-----------------------------------------------------------------------
- 260 CONTINUE
- ANS(1) = X**(-N-1)
- IF (MM.EQ.1) GO TO 280
- K = 1
- DO 270 I=2,MM
- ANS(K+1) = ANS(K)/X
- K = K + 1
- 270 CONTINUE
- 280 CONTINUE
- IF (N.NE.0) RETURN
- IF (KODE.EQ.2) ANS(1) = ANS(1) + XLN
- RETURN
- 290 CONTINUE
- IF (T.GT.0.0D0) GO TO 380
- NZ=0
- IERR=2
- RETURN
- 380 CONTINUE
- NZ=NZ+1
- ANS(MM)=0.0D0
- MM=MM-1
- IF (MM.EQ.0) RETURN
- GO TO 41
- 390 CONTINUE
- NZ=0
- IERR=3
- RETURN
- END
|