dqagse.f 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455
  1. *DECK DQAGSE
  2. SUBROUTINE DQAGSE (F, A, B, EPSABS, EPSREL, LIMIT, RESULT, ABSERR,
  3. + NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
  4. C***BEGIN PROLOGUE DQAGSE
  5. C***PURPOSE The routine calculates an approximation result to a given
  6. C definite integral I = Integral of F over (A,B),
  7. C hopefully satisfying following claim for accuracy
  8. C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
  9. C***LIBRARY SLATEC (QUADPACK)
  10. C***CATEGORY H2A1A1
  11. C***TYPE DOUBLE PRECISION (QAGSE-S, DQAGSE-D)
  12. C***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
  13. C EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
  14. C QUADPACK, QUADRATURE
  15. C***AUTHOR Piessens, Robert
  16. C Applied Mathematics and Programming Division
  17. C K. U. Leuven
  18. C de Doncker, Elise
  19. C Applied Mathematics and Programming Division
  20. C K. U. Leuven
  21. C***DESCRIPTION
  22. C
  23. C Computation of a definite integral
  24. C Standard fortran subroutine
  25. C Double precision version
  26. C
  27. C PARAMETERS
  28. C ON ENTRY
  29. C F - Double precision
  30. C Function subprogram defining the integrand
  31. C function F(X). The actual name for F needs to be
  32. C declared E X T E R N A L in the driver program.
  33. C
  34. C A - Double precision
  35. C Lower limit of integration
  36. C
  37. C B - Double precision
  38. C Upper limit of integration
  39. C
  40. C EPSABS - Double precision
  41. C Absolute accuracy requested
  42. C EPSREL - Double precision
  43. C Relative accuracy requested
  44. C If EPSABS.LE.0
  45. C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
  46. C the routine will end with IER = 6.
  47. C
  48. C LIMIT - Integer
  49. C Gives an upper bound on the number of subintervals
  50. C in the partition of (A,B)
  51. C
  52. C ON RETURN
  53. C RESULT - Double precision
  54. C Approximation to the integral
  55. C
  56. C ABSERR - Double precision
  57. C Estimate of the modulus of the absolute error,
  58. C which should equal or exceed ABS(I-RESULT)
  59. C
  60. C NEVAL - Integer
  61. C Number of integrand evaluations
  62. C
  63. C IER - Integer
  64. C IER = 0 Normal and reliable termination of the
  65. C routine. It is assumed that the requested
  66. C accuracy has been achieved.
  67. C IER.GT.0 Abnormal termination of the routine
  68. C the estimates for integral and error are
  69. C less reliable. It is assumed that the
  70. C requested accuracy has not been achieved.
  71. C ERROR MESSAGES
  72. C = 1 Maximum number of subdivisions allowed
  73. C has been achieved. One can allow more sub-
  74. C divisions by increasing the value of LIMIT
  75. C (and taking the according dimension
  76. C adjustments into account). However, if
  77. C this yields no improvement it is advised
  78. C to analyze the integrand in order to
  79. C determine the integration difficulties. If
  80. C the position of a local difficulty can be
  81. C determined (e.g. singularity,
  82. C discontinuity within the interval) one
  83. C will probably gain from splitting up the
  84. C interval at this point and calling the
  85. C integrator on the subranges. If possible,
  86. C an appropriate special-purpose integrator
  87. C should be used, which is designed for
  88. C handling the type of difficulty involved.
  89. C = 2 The occurrence of roundoff error is detec-
  90. C ted, which prevents the requested
  91. C tolerance from being achieved.
  92. C The error may be under-estimated.
  93. C = 3 Extremely bad integrand behaviour
  94. C occurs at some points of the integration
  95. C interval.
  96. C = 4 The algorithm does not converge.
  97. C Roundoff error is detected in the
  98. C extrapolation table.
  99. C It is presumed that the requested
  100. C tolerance cannot be achieved, and that the
  101. C returned result is the best which can be
  102. C obtained.
  103. C = 5 The integral is probably divergent, or
  104. C slowly convergent. It must be noted that
  105. C divergence can occur with any other value
  106. C of IER.
  107. C = 6 The input is invalid, because
  108. C EPSABS.LE.0 and
  109. C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28).
  110. C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
  111. C IORD(1) and ELIST(1) are set to zero.
  112. C ALIST(1) and BLIST(1) are set to A and B
  113. C respectively.
  114. C
  115. C ALIST - Double precision
  116. C Vector of dimension at least LIMIT, the first
  117. C LAST elements of which are the left end points
  118. C of the subintervals in the partition of the
  119. C given integration range (A,B)
  120. C
  121. C BLIST - Double precision
  122. C Vector of dimension at least LIMIT, the first
  123. C LAST elements of which are the right end points
  124. C of the subintervals in the partition of the given
  125. C integration range (A,B)
  126. C
  127. C RLIST - Double precision
  128. C Vector of dimension at least LIMIT, the first
  129. C LAST elements of which are the integral
  130. C approximations on the subintervals
  131. C
  132. C ELIST - Double precision
  133. C Vector of dimension at least LIMIT, the first
  134. C LAST elements of which are the moduli of the
  135. C absolute error estimates on the subintervals
  136. C
  137. C IORD - Integer
  138. C Vector of dimension at least LIMIT, the first K
  139. C elements of which are pointers to the
  140. C error estimates over the subintervals,
  141. C such that ELIST(IORD(1)), ..., ELIST(IORD(K))
  142. C form a decreasing sequence, with K = LAST
  143. C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
  144. C otherwise
  145. C
  146. C LAST - Integer
  147. C Number of subintervals actually produced in the
  148. C subdivision process
  149. C
  150. C***REFERENCES (NONE)
  151. C***ROUTINES CALLED D1MACH, DQELG, DQK21, DQPSRT
  152. C***REVISION HISTORY (YYMMDD)
  153. C 800101 DATE WRITTEN
  154. C 890531 Changed all specific intrinsics to generic. (WRB)
  155. C 890831 Modified array declarations. (WRB)
  156. C 890831 REVISION DATE from Version 3.2
  157. C 891214 Prologue converted to Version 4.0 format. (BAB)
  158. C***END PROLOGUE DQAGSE
  159. C
  160. DOUBLE PRECISION A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
  161. 1 A2,B,BLIST,B1,B2,CORREC,DEFABS,DEFAB1,DEFAB2,D1MACH,
  162. 2 DRES,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,ERRMAX,
  163. 3 ERROR1,ERROR2,ERRO12,ERRSUM,ERTEST,F,OFLOW,RESABS,RESEPS,RESULT,
  164. 4 RES3LA,RLIST,RLIST2,SMALL,UFLOW
  165. INTEGER ID,IER,IERRO,IORD,IROFF1,IROFF2,IROFF3,JUPBND,K,KSGN,
  166. 1 KTMIN,LAST,LIMIT,MAXERR,NEVAL,NRES,NRMAX,NUMRL2
  167. LOGICAL EXTRAP,NOEXT
  168. C
  169. DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
  170. 1 RES3LA(3),RLIST(*),RLIST2(52)
  171. C
  172. EXTERNAL F
  173. C
  174. C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
  175. C LIMEXP IN SUBROUTINE DQELG (RLIST2 SHOULD BE OF DIMENSION
  176. C (LIMEXP+2) AT LEAST).
  177. C
  178. C LIST OF MAJOR VARIABLES
  179. C -----------------------
  180. C
  181. C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
  182. C CONSIDERED UP TO NOW
  183. C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
  184. C CONSIDERED UP TO NOW
  185. C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
  186. C (ALIST(I),BLIST(I))
  187. C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2 CONTAINING
  188. C THE PART OF THE EPSILON TABLE WHICH IS STILL
  189. C NEEDED FOR FURTHER COMPUTATIONS
  190. C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
  191. C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
  192. C ESTIMATE
  193. C ERRMAX - ELIST(MAXERR)
  194. C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
  195. C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
  196. C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
  197. C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
  198. C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
  199. C ABS(RESULT))
  200. C *****1 - VARIABLE FOR THE LEFT INTERVAL
  201. C *****2 - VARIABLE FOR THE RIGHT INTERVAL
  202. C LAST - INDEX FOR SUBDIVISION
  203. C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
  204. C NUMRL2 - NUMBER OF ELEMENTS CURRENTLY IN RLIST2. IF AN
  205. C APPROPRIATE APPROXIMATION TO THE COMPOUNDED
  206. C INTEGRAL HAS BEEN OBTAINED IT IS PUT IN
  207. C RLIST2(NUMRL2) AFTER NUMRL2 HAS BEEN INCREASED
  208. C BY ONE.
  209. C SMALL - LENGTH OF THE SMALLEST INTERVAL CONSIDERED UP
  210. C TO NOW, MULTIPLIED BY 1.5
  211. C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
  212. C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
  213. C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE IS
  214. C ATTEMPTING TO PERFORM EXTRAPOLATION I.E. BEFORE
  215. C SUBDIVIDING THE SMALLEST INTERVAL WE TRY TO
  216. C DECREASE THE VALUE OF ERLARG.
  217. C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION
  218. C IS NO LONGER ALLOWED (TRUE VALUE)
  219. C
  220. C MACHINE DEPENDENT CONSTANTS
  221. C ---------------------------
  222. C
  223. C EPMACH IS THE LARGEST RELATIVE SPACING.
  224. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  225. C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
  226. C
  227. C***FIRST EXECUTABLE STATEMENT DQAGSE
  228. EPMACH = D1MACH(4)
  229. C
  230. C TEST ON VALIDITY OF PARAMETERS
  231. C ------------------------------
  232. IER = 0
  233. NEVAL = 0
  234. LAST = 0
  235. RESULT = 0.0D+00
  236. ABSERR = 0.0D+00
  237. ALIST(1) = A
  238. BLIST(1) = B
  239. RLIST(1) = 0.0D+00
  240. ELIST(1) = 0.0D+00
  241. IF(EPSABS.LE.0.0D+00.AND.EPSREL.LT.MAX(0.5D+02*EPMACH,0.5D-28))
  242. 1 IER = 6
  243. IF(IER.EQ.6) GO TO 999
  244. C
  245. C FIRST APPROXIMATION TO THE INTEGRAL
  246. C -----------------------------------
  247. C
  248. UFLOW = D1MACH(1)
  249. OFLOW = D1MACH(2)
  250. IERRO = 0
  251. CALL DQK21(F,A,B,RESULT,ABSERR,DEFABS,RESABS)
  252. C
  253. C TEST ON ACCURACY.
  254. C
  255. DRES = ABS(RESULT)
  256. ERRBND = MAX(EPSABS,EPSREL*DRES)
  257. LAST = 1
  258. RLIST(1) = RESULT
  259. ELIST(1) = ABSERR
  260. IORD(1) = 1
  261. IF(ABSERR.LE.1.0D+02*EPMACH*DEFABS.AND.ABSERR.GT.ERRBND) IER = 2
  262. IF(LIMIT.EQ.1) IER = 1
  263. IF(IER.NE.0.OR.(ABSERR.LE.ERRBND.AND.ABSERR.NE.RESABS).OR.
  264. 1 ABSERR.EQ.0.0D+00) GO TO 140
  265. C
  266. C INITIALIZATION
  267. C --------------
  268. C
  269. RLIST2(1) = RESULT
  270. ERRMAX = ABSERR
  271. MAXERR = 1
  272. AREA = RESULT
  273. ERRSUM = ABSERR
  274. ABSERR = OFLOW
  275. NRMAX = 1
  276. NRES = 0
  277. NUMRL2 = 2
  278. KTMIN = 0
  279. EXTRAP = .FALSE.
  280. NOEXT = .FALSE.
  281. IROFF1 = 0
  282. IROFF2 = 0
  283. IROFF3 = 0
  284. KSGN = -1
  285. IF(DRES.GE.(0.1D+01-0.5D+02*EPMACH)*DEFABS) KSGN = 1
  286. C
  287. C MAIN DO-LOOP
  288. C ------------
  289. C
  290. DO 90 LAST = 2,LIMIT
  291. C
  292. C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST ERROR
  293. C ESTIMATE.
  294. C
  295. A1 = ALIST(MAXERR)
  296. B1 = 0.5D+00*(ALIST(MAXERR)+BLIST(MAXERR))
  297. A2 = B1
  298. B2 = BLIST(MAXERR)
  299. ERLAST = ERRMAX
  300. CALL DQK21(F,A1,B1,AREA1,ERROR1,RESABS,DEFAB1)
  301. CALL DQK21(F,A2,B2,AREA2,ERROR2,RESABS,DEFAB2)
  302. C
  303. C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
  304. C AND ERROR AND TEST FOR ACCURACY.
  305. C
  306. AREA12 = AREA1+AREA2
  307. ERRO12 = ERROR1+ERROR2
  308. ERRSUM = ERRSUM+ERRO12-ERRMAX
  309. AREA = AREA+AREA12-RLIST(MAXERR)
  310. IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 15
  311. IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1D-04*ABS(AREA12)
  312. 1 .OR.ERRO12.LT.0.99D+00*ERRMAX) GO TO 10
  313. IF(EXTRAP) IROFF2 = IROFF2+1
  314. IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
  315. 10 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
  316. 15 RLIST(MAXERR) = AREA1
  317. RLIST(LAST) = AREA2
  318. ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
  319. C
  320. C TEST FOR ROUNDOFF ERROR AND EVENTUALLY SET ERROR FLAG.
  321. C
  322. IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
  323. IF(IROFF2.GE.5) IERRO = 3
  324. C
  325. C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF SUBINTERVALS
  326. C EQUALS LIMIT.
  327. C
  328. IF(LAST.EQ.LIMIT) IER = 1
  329. C
  330. C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
  331. C AT A POINT OF THE INTEGRATION RANGE.
  332. C
  333. IF(MAX(ABS(A1),ABS(B2)).LE.(0.1D+01+0.1D+03*EPMACH)*
  334. 1 (ABS(A2)+0.1D+04*UFLOW)) IER = 4
  335. C
  336. C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
  337. C
  338. IF(ERROR2.GT.ERROR1) GO TO 20
  339. ALIST(LAST) = A2
  340. BLIST(MAXERR) = B1
  341. BLIST(LAST) = B2
  342. ELIST(MAXERR) = ERROR1
  343. ELIST(LAST) = ERROR2
  344. GO TO 30
  345. 20 ALIST(MAXERR) = A2
  346. ALIST(LAST) = A1
  347. BLIST(LAST) = B1
  348. RLIST(MAXERR) = AREA2
  349. RLIST(LAST) = AREA1
  350. ELIST(MAXERR) = ERROR2
  351. ELIST(LAST) = ERROR1
  352. C
  353. C CALL SUBROUTINE DQPSRT TO MAINTAIN THE DESCENDING ORDERING
  354. C IN THE LIST OF ERROR ESTIMATES AND SELECT THE SUBINTERVAL
  355. C WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE BISECTED NEXT).
  356. C
  357. 30 CALL DQPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
  358. C ***JUMP OUT OF DO-LOOP
  359. IF(ERRSUM.LE.ERRBND) GO TO 115
  360. C ***JUMP OUT OF DO-LOOP
  361. IF(IER.NE.0) GO TO 100
  362. IF(LAST.EQ.2) GO TO 80
  363. IF(NOEXT) GO TO 90
  364. ERLARG = ERLARG-ERLAST
  365. IF(ABS(B1-A1).GT.SMALL) ERLARG = ERLARG+ERRO12
  366. IF(EXTRAP) GO TO 40
  367. C
  368. C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
  369. C SMALLEST INTERVAL.
  370. C
  371. IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 90
  372. EXTRAP = .TRUE.
  373. NRMAX = 2
  374. 40 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 60
  375. C
  376. C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
  377. C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS OVER THE
  378. C LARGER INTERVALS (ERLARG) AND PERFORM EXTRAPOLATION.
  379. C
  380. ID = NRMAX
  381. JUPBND = LAST
  382. IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
  383. DO 50 K = ID,JUPBND
  384. MAXERR = IORD(NRMAX)
  385. ERRMAX = ELIST(MAXERR)
  386. C ***JUMP OUT OF DO-LOOP
  387. IF(ABS(BLIST(MAXERR)-ALIST(MAXERR)).GT.SMALL) GO TO 90
  388. NRMAX = NRMAX+1
  389. 50 CONTINUE
  390. C
  391. C PERFORM EXTRAPOLATION.
  392. C
  393. 60 NUMRL2 = NUMRL2+1
  394. RLIST2(NUMRL2) = AREA
  395. CALL DQELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
  396. KTMIN = KTMIN+1
  397. IF(KTMIN.GT.5.AND.ABSERR.LT.0.1D-02*ERRSUM) IER = 5
  398. IF(ABSEPS.GE.ABSERR) GO TO 70
  399. KTMIN = 0
  400. ABSERR = ABSEPS
  401. RESULT = RESEPS
  402. CORREC = ERLARG
  403. ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
  404. C ***JUMP OUT OF DO-LOOP
  405. IF(ABSERR.LE.ERTEST) GO TO 100
  406. C
  407. C PREPARE BISECTION OF THE SMALLEST INTERVAL.
  408. C
  409. 70 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
  410. IF(IER.EQ.5) GO TO 100
  411. MAXERR = IORD(1)
  412. ERRMAX = ELIST(MAXERR)
  413. NRMAX = 1
  414. EXTRAP = .FALSE.
  415. SMALL = SMALL*0.5D+00
  416. ERLARG = ERRSUM
  417. GO TO 90
  418. 80 SMALL = ABS(B-A)*0.375D+00
  419. ERLARG = ERRSUM
  420. ERTEST = ERRBND
  421. RLIST2(2) = AREA
  422. 90 CONTINUE
  423. C
  424. C SET FINAL RESULT AND ERROR ESTIMATE.
  425. C ------------------------------------
  426. C
  427. 100 IF(ABSERR.EQ.OFLOW) GO TO 115
  428. IF(IER+IERRO.EQ.0) GO TO 110
  429. IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
  430. IF(IER.EQ.0) IER = 3
  431. IF(RESULT.NE.0.0D+00.AND.AREA.NE.0.0D+00) GO TO 105
  432. IF(ABSERR.GT.ERRSUM) GO TO 115
  433. IF(AREA.EQ.0.0D+00) GO TO 130
  434. GO TO 110
  435. 105 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA)) GO TO 115
  436. C
  437. C TEST ON DIVERGENCE.
  438. C
  439. 110 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
  440. 1 DEFABS*0.1D-01) GO TO 130
  441. IF(0.1D-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1D+03
  442. 1 .OR.ERRSUM.GT.ABS(AREA)) IER = 6
  443. GO TO 130
  444. C
  445. C COMPUTE GLOBAL INTEGRAL SUM.
  446. C
  447. 115 RESULT = 0.0D+00
  448. DO 120 K = 1,LAST
  449. RESULT = RESULT+RLIST(K)
  450. 120 CONTINUE
  451. ABSERR = ERRSUM
  452. 130 IF(IER.GT.2) IER = IER-1
  453. 140 NEVAL = 42*LAST-21
  454. 999 RETURN
  455. END