dqk15.f 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. *DECK DQK15
  2. SUBROUTINE DQK15 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
  3. C***BEGIN PROLOGUE DQK15
  4. C***PURPOSE To compute I = Integral of F over (A,B), with error
  5. C estimate
  6. C J = integral of ABS(F) over (A,B)
  7. C***LIBRARY SLATEC (QUADPACK)
  8. C***CATEGORY H2A1A2
  9. C***TYPE DOUBLE PRECISION (QK15-S, DQK15-D)
  10. C***KEYWORDS 15-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  11. C***AUTHOR Piessens, Robert
  12. C Applied Mathematics and Programming Division
  13. C K. U. Leuven
  14. C de Doncker, Elise
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C***DESCRIPTION
  18. C
  19. C Integration rules
  20. C Standard fortran subroutine
  21. C Double precision version
  22. C
  23. C PARAMETERS
  24. C ON ENTRY
  25. C F - Double precision
  26. C Function subprogram defining the integrand
  27. C FUNCTION F(X). The actual name for F needs to be
  28. C Declared E X T E R N A L in the calling program.
  29. C
  30. C A - Double precision
  31. C Lower limit of integration
  32. C
  33. C B - Double precision
  34. C Upper limit of integration
  35. C
  36. C ON RETURN
  37. C RESULT - Double precision
  38. C Approximation to the integral I
  39. C Result is computed by applying the 15-POINT
  40. C KRONROD RULE (RESK) obtained by optimal addition
  41. C of abscissae to the 7-POINT GAUSS RULE(RESG).
  42. C
  43. C ABSERR - Double precision
  44. C Estimate of the modulus of the absolute error,
  45. C which should not exceed ABS(I-RESULT)
  46. C
  47. C RESABS - Double precision
  48. C Approximation to the integral J
  49. C
  50. C RESASC - Double precision
  51. C Approximation to the integral of ABS(F-I/(B-A))
  52. C over (A,B)
  53. C
  54. C***REFERENCES (NONE)
  55. C***ROUTINES CALLED D1MACH
  56. C***REVISION HISTORY (YYMMDD)
  57. C 800101 DATE WRITTEN
  58. C 890531 Changed all specific intrinsics to generic. (WRB)
  59. C 890531 REVISION DATE from Version 3.2
  60. C 891214 Prologue converted to Version 4.0 format. (BAB)
  61. C***END PROLOGUE DQK15
  62. C
  63. DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH,
  64. 1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
  65. 2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
  66. INTEGER J,JTW,JTWM1
  67. EXTERNAL F
  68. C
  69. DIMENSION FV1(7),FV2(7),WG(4),WGK(8),XGK(8)
  70. C
  71. C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
  72. C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
  73. C CORRESPONDING WEIGHTS ARE GIVEN.
  74. C
  75. C XGK - ABSCISSAE OF THE 15-POINT KRONROD RULE
  76. C XGK(2), XGK(4), ... ABSCISSAE OF THE 7-POINT
  77. C GAUSS RULE
  78. C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
  79. C ADDED TO THE 7-POINT GAUSS RULE
  80. C
  81. C WGK - WEIGHTS OF THE 15-POINT KRONROD RULE
  82. C
  83. C WG - WEIGHTS OF THE 7-POINT GAUSS RULE
  84. C
  85. C
  86. C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
  87. C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
  88. C BELL LABS, NOV. 1981.
  89. C
  90. SAVE WG, XGK, WGK
  91. DATA WG ( 1) / 0.1294849661 6886969327 0611432679 082 D0 /
  92. DATA WG ( 2) / 0.2797053914 8927666790 1467771423 780 D0 /
  93. DATA WG ( 3) / 0.3818300505 0511894495 0369775488 975 D0 /
  94. DATA WG ( 4) / 0.4179591836 7346938775 5102040816 327 D0 /
  95. C
  96. DATA XGK ( 1) / 0.9914553711 2081263920 6854697526 329 D0 /
  97. DATA XGK ( 2) / 0.9491079123 4275852452 6189684047 851 D0 /
  98. DATA XGK ( 3) / 0.8648644233 5976907278 9712788640 926 D0 /
  99. DATA XGK ( 4) / 0.7415311855 9939443986 3864773280 788 D0 /
  100. DATA XGK ( 5) / 0.5860872354 6769113029 4144838258 730 D0 /
  101. DATA XGK ( 6) / 0.4058451513 7739716690 6606412076 961 D0 /
  102. DATA XGK ( 7) / 0.2077849550 0789846760 0689403773 245 D0 /
  103. DATA XGK ( 8) / 0.0000000000 0000000000 0000000000 000 D0 /
  104. C
  105. DATA WGK ( 1) / 0.0229353220 1052922496 3732008058 970 D0 /
  106. DATA WGK ( 2) / 0.0630920926 2997855329 0700663189 204 D0 /
  107. DATA WGK ( 3) / 0.1047900103 2225018383 9876322541 518 D0 /
  108. DATA WGK ( 4) / 0.1406532597 1552591874 5189590510 238 D0 /
  109. DATA WGK ( 5) / 0.1690047266 3926790282 6583426598 550 D0 /
  110. DATA WGK ( 6) / 0.1903505780 6478540991 3256402421 014 D0 /
  111. DATA WGK ( 7) / 0.2044329400 7529889241 4161999234 649 D0 /
  112. DATA WGK ( 8) / 0.2094821410 8472782801 2999174891 714 D0 /
  113. C
  114. C
  115. C LIST OF MAJOR VARIABLES
  116. C -----------------------
  117. C
  118. C CENTR - MID POINT OF THE INTERVAL
  119. C HLGTH - HALF-LENGTH OF THE INTERVAL
  120. C ABSC - ABSCISSA
  121. C FVAL* - FUNCTION VALUE
  122. C RESG - RESULT OF THE 7-POINT GAUSS FORMULA
  123. C RESK - RESULT OF THE 15-POINT KRONROD FORMULA
  124. C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
  125. C I.E. TO I/(B-A)
  126. C
  127. C MACHINE DEPENDENT CONSTANTS
  128. C ---------------------------
  129. C
  130. C EPMACH IS THE LARGEST RELATIVE SPACING.
  131. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  132. C
  133. C***FIRST EXECUTABLE STATEMENT DQK15
  134. EPMACH = D1MACH(4)
  135. UFLOW = D1MACH(1)
  136. C
  137. CENTR = 0.5D+00*(A+B)
  138. HLGTH = 0.5D+00*(B-A)
  139. DHLGTH = ABS(HLGTH)
  140. C
  141. C COMPUTE THE 15-POINT KRONROD APPROXIMATION TO
  142. C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
  143. C
  144. FC = F(CENTR)
  145. RESG = FC*WG(4)
  146. RESK = FC*WGK(8)
  147. RESABS = ABS(RESK)
  148. DO 10 J=1,3
  149. JTW = J*2
  150. ABSC = HLGTH*XGK(JTW)
  151. FVAL1 = F(CENTR-ABSC)
  152. FVAL2 = F(CENTR+ABSC)
  153. FV1(JTW) = FVAL1
  154. FV2(JTW) = FVAL2
  155. FSUM = FVAL1+FVAL2
  156. RESG = RESG+WG(J)*FSUM
  157. RESK = RESK+WGK(JTW)*FSUM
  158. RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
  159. 10 CONTINUE
  160. DO 15 J = 1,4
  161. JTWM1 = J*2-1
  162. ABSC = HLGTH*XGK(JTWM1)
  163. FVAL1 = F(CENTR-ABSC)
  164. FVAL2 = F(CENTR+ABSC)
  165. FV1(JTWM1) = FVAL1
  166. FV2(JTWM1) = FVAL2
  167. FSUM = FVAL1+FVAL2
  168. RESK = RESK+WGK(JTWM1)*FSUM
  169. RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
  170. 15 CONTINUE
  171. RESKH = RESK*0.5D+00
  172. RESASC = WGK(8)*ABS(FC-RESKH)
  173. DO 20 J=1,7
  174. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  175. 20 CONTINUE
  176. RESULT = RESK*HLGTH
  177. RESABS = RESABS*DHLGTH
  178. RESASC = RESASC*DHLGTH
  179. ABSERR = ABS((RESK-RESG)*HLGTH)
  180. IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
  181. 1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
  182. IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
  183. 1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
  184. RETURN
  185. END