123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- *DECK DQK31
- SUBROUTINE DQK31 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
- C***BEGIN PROLOGUE DQK31
- C***PURPOSE To compute I = Integral of F over (A,B) with error
- C estimate
- C J = Integral of ABS(F) over (A,B)
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A1A2
- C***TYPE DOUBLE PRECISION (QK31-S, DQK31-D)
- C***KEYWORDS 31-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration rules
- C Standard fortran subroutine
- C Double precision version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Double precision
- C Function subprogram defining the integrand
- C FUNCTION F(X). The actual name for F needs to be
- C Declared E X T E R N A L in the calling program.
- C
- C A - Double precision
- C Lower limit of integration
- C
- C B - Double precision
- C Upper limit of integration
- C
- C ON RETURN
- C RESULT - Double precision
- C Approximation to the integral I
- C RESULT is computed by applying the 31-POINT
- C GAUSS-KRONROD RULE (RESK), obtained by optimal
- C addition of abscissae to the 15-POINT GAUSS
- C RULE (RESG).
- C
- C ABSERR - Double precision
- C Estimate of the modulus of the modulus,
- C which should not exceed ABS(I-RESULT)
- C
- C RESABS - Double precision
- C Approximation to the integral J
- C
- C RESASC - Double precision
- C Approximation to the integral of ABS(F-I/(B-A))
- C over (A,B)
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED D1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE DQK31
- DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH,
- 1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
- 2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
- INTEGER J,JTW,JTWM1
- EXTERNAL F
- C
- DIMENSION FV1(15),FV2(15),XGK(16),WGK(16),WG(8)
- C
- C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
- C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
- C CORRESPONDING WEIGHTS ARE GIVEN.
- C
- C XGK - ABSCISSAE OF THE 31-POINT KRONROD RULE
- C XGK(2), XGK(4), ... ABSCISSAE OF THE 15-POINT
- C GAUSS RULE
- C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
- C ADDED TO THE 15-POINT GAUSS RULE
- C
- C WGK - WEIGHTS OF THE 31-POINT KRONROD RULE
- C
- C WG - WEIGHTS OF THE 15-POINT GAUSS RULE
- C
- C
- C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
- C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
- C BELL LABS, NOV. 1981.
- C
- SAVE WG, XGK, WGK
- DATA WG ( 1) / 0.0307532419 9611726835 4628393577 204 D0 /
- DATA WG ( 2) / 0.0703660474 8810812470 9267416450 667 D0 /
- DATA WG ( 3) / 0.1071592204 6717193501 1869546685 869 D0 /
- DATA WG ( 4) / 0.1395706779 2615431444 7804794511 028 D0 /
- DATA WG ( 5) / 0.1662692058 1699393355 3200860481 209 D0 /
- DATA WG ( 6) / 0.1861610000 1556221102 6800561866 423 D0 /
- DATA WG ( 7) / 0.1984314853 2711157645 6118326443 839 D0 /
- DATA WG ( 8) / 0.2025782419 2556127288 0620199967 519 D0 /
- C
- DATA XGK ( 1) / 0.9980022986 9339706028 5172840152 271 D0 /
- DATA XGK ( 2) / 0.9879925180 2048542848 9565718586 613 D0 /
- DATA XGK ( 3) / 0.9677390756 7913913425 7347978784 337 D0 /
- DATA XGK ( 4) / 0.9372733924 0070590430 7758947710 209 D0 /
- DATA XGK ( 5) / 0.8972645323 4408190088 2509656454 496 D0 /
- DATA XGK ( 6) / 0.8482065834 1042721620 0648320774 217 D0 /
- DATA XGK ( 7) / 0.7904185014 4246593296 7649294817 947 D0 /
- DATA XGK ( 8) / 0.7244177313 6017004741 6186054613 938 D0 /
- DATA XGK ( 9) / 0.6509967412 9741697053 3735895313 275 D0 /
- DATA XGK ( 10) / 0.5709721726 0853884753 7226737253 911 D0 /
- DATA XGK ( 11) / 0.4850818636 4023968069 3655740232 351 D0 /
- DATA XGK ( 12) / 0.3941513470 7756336989 7207370981 045 D0 /
- DATA XGK ( 13) / 0.2991800071 5316881216 6780024266 389 D0 /
- DATA XGK ( 14) / 0.2011940939 9743452230 0628303394 596 D0 /
- DATA XGK ( 15) / 0.1011420669 1871749902 7074231447 392 D0 /
- DATA XGK ( 16) / 0.0000000000 0000000000 0000000000 000 D0 /
- C
- DATA WGK ( 1) / 0.0053774798 7292334898 7792051430 128 D0 /
- DATA WGK ( 2) / 0.0150079473 2931612253 8374763075 807 D0 /
- DATA WGK ( 3) / 0.0254608473 2671532018 6874001019 653 D0 /
- DATA WGK ( 4) / 0.0353463607 9137584622 2037948478 360 D0 /
- DATA WGK ( 5) / 0.0445897513 2476487660 8227299373 280 D0 /
- DATA WGK ( 6) / 0.0534815246 9092808726 5343147239 430 D0 /
- DATA WGK ( 7) / 0.0620095678 0067064028 5139230960 803 D0 /
- DATA WGK ( 8) / 0.0698541213 1872825870 9520077099 147 D0 /
- DATA WGK ( 9) / 0.0768496807 5772037889 4432777482 659 D0 /
- DATA WGK ( 10) / 0.0830805028 2313302103 8289247286 104 D0 /
- DATA WGK ( 11) / 0.0885644430 5621177064 7275443693 774 D0 /
- DATA WGK ( 12) / 0.0931265981 7082532122 5486872747 346 D0 /
- DATA WGK ( 13) / 0.0966427269 8362367850 5179907627 589 D0 /
- DATA WGK ( 14) / 0.0991735987 2179195933 2393173484 603 D0 /
- DATA WGK ( 15) / 0.1007698455 2387559504 4946662617 570 D0 /
- DATA WGK ( 16) / 0.1013300070 1479154901 7374792767 493 D0 /
- C
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C CENTR - MID POINT OF THE INTERVAL
- C HLGTH - HALF-LENGTH OF THE INTERVAL
- C ABSC - ABSCISSA
- C FVAL* - FUNCTION VALUE
- C RESG - RESULT OF THE 15-POINT GAUSS FORMULA
- C RESK - RESULT OF THE 31-POINT KRONROD FORMULA
- C RESKH - APPROXIMATION TO THE MEAN VALUE OF F OVER (A,B),
- C I.E. TO I/(B-A)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C***FIRST EXECUTABLE STATEMENT DQK31
- EPMACH = D1MACH(4)
- UFLOW = D1MACH(1)
- C
- CENTR = 0.5D+00*(A+B)
- HLGTH = 0.5D+00*(B-A)
- DHLGTH = ABS(HLGTH)
- C
- C COMPUTE THE 31-POINT KRONROD APPROXIMATION TO
- C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
- C
- FC = F(CENTR)
- RESG = WG(8)*FC
- RESK = WGK(16)*FC
- RESABS = ABS(RESK)
- DO 10 J=1,7
- JTW = J*2
- ABSC = HLGTH*XGK(JTW)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTW) = FVAL1
- FV2(JTW) = FVAL2
- FSUM = FVAL1+FVAL2
- RESG = RESG+WG(J)*FSUM
- RESK = RESK+WGK(JTW)*FSUM
- RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
- 10 CONTINUE
- DO 15 J = 1,8
- JTWM1 = J*2-1
- ABSC = HLGTH*XGK(JTWM1)
- FVAL1 = F(CENTR-ABSC)
- FVAL2 = F(CENTR+ABSC)
- FV1(JTWM1) = FVAL1
- FV2(JTWM1) = FVAL2
- FSUM = FVAL1+FVAL2
- RESK = RESK+WGK(JTWM1)*FSUM
- RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
- 15 CONTINUE
- RESKH = RESK*0.5D+00
- RESASC = WGK(16)*ABS(FC-RESKH)
- DO 20 J=1,15
- RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
- 20 CONTINUE
- RESULT = RESK*HLGTH
- RESABS = RESABS*DHLGTH
- RESASC = RESASC*DHLGTH
- ABSERR = ABS((RESK-RESG)*HLGTH)
- IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
- 1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
- IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
- 1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
- RETURN
- END
|