dqk41.f 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *DECK DQK41
  2. SUBROUTINE DQK41 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
  3. C***BEGIN PROLOGUE DQK41
  4. C***PURPOSE To compute I = Integral of F over (A,B), with error
  5. C estimate
  6. C J = Integral of ABS(F) over (A,B)
  7. C***LIBRARY SLATEC (QUADPACK)
  8. C***CATEGORY H2A1A2
  9. C***TYPE DOUBLE PRECISION (QK41-S, DQK41-D)
  10. C***KEYWORDS 41-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  11. C***AUTHOR Piessens, Robert
  12. C Applied Mathematics and Programming Division
  13. C K. U. Leuven
  14. C de Doncker, Elise
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C***DESCRIPTION
  18. C
  19. C Integration rules
  20. C Standard fortran subroutine
  21. C Double precision version
  22. C
  23. C PARAMETERS
  24. C ON ENTRY
  25. C F - Double precision
  26. C Function subprogram defining the integrand
  27. C FUNCTION F(X). The actual name for F needs to be
  28. C declared E X T E R N A L in the calling program.
  29. C
  30. C A - Double precision
  31. C Lower limit of integration
  32. C
  33. C B - Double precision
  34. C Upper limit of integration
  35. C
  36. C ON RETURN
  37. C RESULT - Double precision
  38. C Approximation to the integral I
  39. C RESULT is computed by applying the 41-POINT
  40. C GAUSS-KRONROD RULE (RESK) obtained by optimal
  41. C addition of abscissae to the 20-POINT GAUSS
  42. C RULE (RESG).
  43. C
  44. C ABSERR - Double precision
  45. C Estimate of the modulus of the absolute error,
  46. C which should not exceed ABS(I-RESULT)
  47. C
  48. C RESABS - Double precision
  49. C Approximation to the integral J
  50. C
  51. C RESASC - Double precision
  52. C Approximation to the integral of ABS(F-I/(B-A))
  53. C over (A,B)
  54. C
  55. C***REFERENCES (NONE)
  56. C***ROUTINES CALLED D1MACH
  57. C***REVISION HISTORY (YYMMDD)
  58. C 800101 DATE WRITTEN
  59. C 890531 Changed all specific intrinsics to generic. (WRB)
  60. C 890531 REVISION DATE from Version 3.2
  61. C 891214 Prologue converted to Version 4.0 format. (BAB)
  62. C***END PROLOGUE DQK41
  63. C
  64. DOUBLE PRECISION A,ABSC,ABSERR,B,CENTR,DHLGTH,
  65. 1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
  66. 2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
  67. INTEGER J,JTW,JTWM1
  68. EXTERNAL F
  69. C
  70. DIMENSION FV1(20),FV2(20),XGK(21),WGK(21),WG(10)
  71. C
  72. C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE INTERVAL (-1,1).
  73. C BECAUSE OF SYMMETRY ONLY THE POSITIVE ABSCISSAE AND THEIR
  74. C CORRESPONDING WEIGHTS ARE GIVEN.
  75. C
  76. C XGK - ABSCISSAE OF THE 41-POINT GAUSS-KRONROD RULE
  77. C XGK(2), XGK(4), ... ABSCISSAE OF THE 20-POINT
  78. C GAUSS RULE
  79. C XGK(1), XGK(3), ... ABSCISSAE WHICH ARE OPTIMALLY
  80. C ADDED TO THE 20-POINT GAUSS RULE
  81. C
  82. C WGK - WEIGHTS OF THE 41-POINT GAUSS-KRONROD RULE
  83. C
  84. C WG - WEIGHTS OF THE 20-POINT GAUSS RULE
  85. C
  86. C
  87. C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
  88. C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
  89. C BELL LABS, NOV. 1981.
  90. C
  91. SAVE WG, XGK, WGK
  92. DATA WG ( 1) / 0.0176140071 3915211831 1861962351 853 D0 /
  93. DATA WG ( 2) / 0.0406014298 0038694133 1039952274 932 D0 /
  94. DATA WG ( 3) / 0.0626720483 3410906356 9506535187 042 D0 /
  95. DATA WG ( 4) / 0.0832767415 7670474872 4758143222 046 D0 /
  96. DATA WG ( 5) / 0.1019301198 1724043503 6750135480 350 D0 /
  97. DATA WG ( 6) / 0.1181945319 6151841731 2377377711 382 D0 /
  98. DATA WG ( 7) / 0.1316886384 4917662689 8494499748 163 D0 /
  99. DATA WG ( 8) / 0.1420961093 1838205132 9298325067 165 D0 /
  100. DATA WG ( 9) / 0.1491729864 7260374678 7828737001 969 D0 /
  101. DATA WG ( 10) / 0.1527533871 3072585069 8084331955 098 D0 /
  102. C
  103. DATA XGK ( 1) / 0.9988590315 8827766383 8315576545 863 D0 /
  104. DATA XGK ( 2) / 0.9931285991 8509492478 6122388471 320 D0 /
  105. DATA XGK ( 3) / 0.9815078774 5025025919 3342994720 217 D0 /
  106. DATA XGK ( 4) / 0.9639719272 7791379126 7666131197 277 D0 /
  107. DATA XGK ( 5) / 0.9408226338 3175475351 9982722212 443 D0 /
  108. DATA XGK ( 6) / 0.9122344282 5132590586 7752441203 298 D0 /
  109. DATA XGK ( 7) / 0.8782768112 5228197607 7442995113 078 D0 /
  110. DATA XGK ( 8) / 0.8391169718 2221882339 4529061701 521 D0 /
  111. DATA XGK ( 9) / 0.7950414288 3755119835 0638833272 788 D0 /
  112. DATA XGK ( 10) / 0.7463319064 6015079261 4305070355 642 D0 /
  113. DATA XGK ( 11) / 0.6932376563 3475138480 5490711845 932 D0 /
  114. DATA XGK ( 12) / 0.6360536807 2651502545 2836696226 286 D0 /
  115. DATA XGK ( 13) / 0.5751404468 1971031534 2946036586 425 D0 /
  116. DATA XGK ( 14) / 0.5108670019 5082709800 4364050955 251 D0 /
  117. DATA XGK ( 15) / 0.4435931752 3872510319 9992213492 640 D0 /
  118. DATA XGK ( 16) / 0.3737060887 1541956067 2548177024 927 D0 /
  119. DATA XGK ( 17) / 0.3016278681 1491300432 0555356858 592 D0 /
  120. DATA XGK ( 18) / 0.2277858511 4164507808 0496195368 575 D0 /
  121. DATA XGK ( 19) / 0.1526054652 4092267550 5220241022 678 D0 /
  122. DATA XGK ( 20) / 0.0765265211 3349733375 4640409398 838 D0 /
  123. DATA XGK ( 21) / 0.0000000000 0000000000 0000000000 000 D0 /
  124. C
  125. DATA WGK ( 1) / 0.0030735837 1852053150 1218293246 031 D0 /
  126. DATA WGK ( 2) / 0.0086002698 5564294219 8661787950 102 D0 /
  127. DATA WGK ( 3) / 0.0146261692 5697125298 3787960308 868 D0 /
  128. DATA WGK ( 4) / 0.0203883734 6126652359 8010231432 755 D0 /
  129. DATA WGK ( 5) / 0.0258821336 0495115883 4505067096 153 D0 /
  130. DATA WGK ( 6) / 0.0312873067 7703279895 8543119323 801 D0 /
  131. DATA WGK ( 7) / 0.0366001697 5820079803 0557240707 211 D0 /
  132. DATA WGK ( 8) / 0.0416688733 2797368626 3788305936 895 D0 /
  133. DATA WGK ( 9) / 0.0464348218 6749767472 0231880926 108 D0 /
  134. DATA WGK ( 10) / 0.0509445739 2372869193 2707670050 345 D0 /
  135. DATA WGK ( 11) / 0.0551951053 4828599474 4832372419 777 D0 /
  136. DATA WGK ( 12) / 0.0591114008 8063957237 4967220648 594 D0 /
  137. DATA WGK ( 13) / 0.0626532375 5478116802 5870122174 255 D0 /
  138. DATA WGK ( 14) / 0.0658345971 3361842211 1563556969 398 D0 /
  139. DATA WGK ( 15) / 0.0686486729 2852161934 5623411885 368 D0 /
  140. DATA WGK ( 16) / 0.0710544235 5344406830 5790361723 210 D0 /
  141. DATA WGK ( 17) / 0.0730306903 3278666749 5189417658 913 D0 /
  142. DATA WGK ( 18) / 0.0745828754 0049918898 6581418362 488 D0 /
  143. DATA WGK ( 19) / 0.0757044976 8455667465 9542775376 617 D0 /
  144. DATA WGK ( 20) / 0.0763778676 7208073670 5502835038 061 D0 /
  145. DATA WGK ( 21) / 0.0766007119 1799965644 5049901530 102 D0 /
  146. C
  147. C
  148. C LIST OF MAJOR VARIABLES
  149. C -----------------------
  150. C
  151. C CENTR - MID POINT OF THE INTERVAL
  152. C HLGTH - HALF-LENGTH OF THE INTERVAL
  153. C ABSC - ABSCISSA
  154. C FVAL* - FUNCTION VALUE
  155. C RESG - RESULT OF THE 20-POINT GAUSS FORMULA
  156. C RESK - RESULT OF THE 41-POINT KRONROD FORMULA
  157. C RESKH - APPROXIMATION TO MEAN VALUE OF F OVER (A,B), I.E.
  158. C TO I/(B-A)
  159. C
  160. C MACHINE DEPENDENT CONSTANTS
  161. C ---------------------------
  162. C
  163. C EPMACH IS THE LARGEST RELATIVE SPACING.
  164. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  165. C
  166. C***FIRST EXECUTABLE STATEMENT DQK41
  167. EPMACH = D1MACH(4)
  168. UFLOW = D1MACH(1)
  169. C
  170. CENTR = 0.5D+00*(A+B)
  171. HLGTH = 0.5D+00*(B-A)
  172. DHLGTH = ABS(HLGTH)
  173. C
  174. C COMPUTE THE 41-POINT GAUSS-KRONROD APPROXIMATION TO
  175. C THE INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
  176. C
  177. RESG = 0.0D+00
  178. FC = F(CENTR)
  179. RESK = WGK(21)*FC
  180. RESABS = ABS(RESK)
  181. DO 10 J=1,10
  182. JTW = J*2
  183. ABSC = HLGTH*XGK(JTW)
  184. FVAL1 = F(CENTR-ABSC)
  185. FVAL2 = F(CENTR+ABSC)
  186. FV1(JTW) = FVAL1
  187. FV2(JTW) = FVAL2
  188. FSUM = FVAL1+FVAL2
  189. RESG = RESG+WG(J)*FSUM
  190. RESK = RESK+WGK(JTW)*FSUM
  191. RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
  192. 10 CONTINUE
  193. DO 15 J = 1,10
  194. JTWM1 = J*2-1
  195. ABSC = HLGTH*XGK(JTWM1)
  196. FVAL1 = F(CENTR-ABSC)
  197. FVAL2 = F(CENTR+ABSC)
  198. FV1(JTWM1) = FVAL1
  199. FV2(JTWM1) = FVAL2
  200. FSUM = FVAL1+FVAL2
  201. RESK = RESK+WGK(JTWM1)*FSUM
  202. RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
  203. 15 CONTINUE
  204. RESKH = RESK*0.5D+00
  205. RESASC = WGK(21)*ABS(FC-RESKH)
  206. DO 20 J=1,20
  207. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  208. 20 CONTINUE
  209. RESULT = RESK*HLGTH
  210. RESABS = RESABS*DHLGTH
  211. RESASC = RESASC*DHLGTH
  212. ABSERR = ABS((RESK-RESG)*HLGTH)
  213. IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.D+00)
  214. 1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
  215. IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
  216. 1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
  217. RETURN
  218. END