dqk61.f 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241
  1. *DECK DQK61
  2. SUBROUTINE DQK61 (F, A, B, RESULT, ABSERR, RESABS, RESASC)
  3. C***BEGIN PROLOGUE DQK61
  4. C***PURPOSE To compute I = Integral of F over (A,B) with error
  5. C estimate
  6. C J = Integral of ABS(F) over (A,B)
  7. C***LIBRARY SLATEC (QUADPACK)
  8. C***CATEGORY H2A1A2
  9. C***TYPE DOUBLE PRECISION (QK61-S, DQK61-D)
  10. C***KEYWORDS 61-POINT GAUSS-KRONROD RULES, QUADPACK, QUADRATURE
  11. C***AUTHOR Piessens, Robert
  12. C Applied Mathematics and Programming Division
  13. C K. U. Leuven
  14. C de Doncker, Elise
  15. C Applied Mathematics and Programming Division
  16. C K. U. Leuven
  17. C***DESCRIPTION
  18. C
  19. C Integration rule
  20. C Standard fortran subroutine
  21. C Double precision version
  22. C
  23. C
  24. C PARAMETERS
  25. C ON ENTRY
  26. C F - Double precision
  27. C Function subprogram defining the integrand
  28. C function F(X). The actual name for F needs to be
  29. C declared E X T E R N A L in the calling program.
  30. C
  31. C A - Double precision
  32. C Lower limit of integration
  33. C
  34. C B - Double precision
  35. C Upper limit of integration
  36. C
  37. C ON RETURN
  38. C RESULT - Double precision
  39. C Approximation to the integral I
  40. C RESULT is computed by applying the 61-point
  41. C Kronrod rule (RESK) obtained by optimal addition of
  42. C abscissae to the 30-point Gauss rule (RESG).
  43. C
  44. C ABSERR - Double precision
  45. C Estimate of the modulus of the absolute error,
  46. C which should equal or exceed ABS(I-RESULT)
  47. C
  48. C RESABS - Double precision
  49. C Approximation to the integral J
  50. C
  51. C RESASC - Double precision
  52. C Approximation to the integral of ABS(F-I/(B-A))
  53. C
  54. C***REFERENCES (NONE)
  55. C***ROUTINES CALLED D1MACH
  56. C***REVISION HISTORY (YYMMDD)
  57. C 800101 DATE WRITTEN
  58. C 890531 Changed all specific intrinsics to generic. (WRB)
  59. C 890531 REVISION DATE from Version 3.2
  60. C 891214 Prologue converted to Version 4.0 format. (BAB)
  61. C***END PROLOGUE DQK61
  62. C
  63. DOUBLE PRECISION A,DABSC,ABSERR,B,CENTR,DHLGTH,
  64. 1 D1MACH,EPMACH,F,FC,FSUM,FVAL1,FVAL2,FV1,FV2,HLGTH,RESABS,RESASC,
  65. 2 RESG,RESK,RESKH,RESULT,UFLOW,WG,WGK,XGK
  66. INTEGER J,JTW,JTWM1
  67. EXTERNAL F
  68. C
  69. DIMENSION FV1(30),FV2(30),XGK(31),WGK(31),WG(15)
  70. C
  71. C THE ABSCISSAE AND WEIGHTS ARE GIVEN FOR THE
  72. C INTERVAL (-1,1). BECAUSE OF SYMMETRY ONLY THE POSITIVE
  73. C ABSCISSAE AND THEIR CORRESPONDING WEIGHTS ARE GIVEN.
  74. C
  75. C XGK - ABSCISSAE OF THE 61-POINT KRONROD RULE
  76. C XGK(2), XGK(4) ... ABSCISSAE OF THE 30-POINT
  77. C GAUSS RULE
  78. C XGK(1), XGK(3) ... OPTIMALLY ADDED ABSCISSAE
  79. C TO THE 30-POINT GAUSS RULE
  80. C
  81. C WGK - WEIGHTS OF THE 61-POINT KRONROD RULE
  82. C
  83. C WG - WEIGHTS OF THE 30-POINT GAUSS RULE
  84. C
  85. C
  86. C GAUSS QUADRATURE WEIGHTS AND KRONROD QUADRATURE ABSCISSAE AND WEIGHTS
  87. C AS EVALUATED WITH 80 DECIMAL DIGIT ARITHMETIC BY L. W. FULLERTON,
  88. C BELL LABS, NOV. 1981.
  89. C
  90. SAVE WG, XGK, WGK
  91. DATA WG ( 1) / 0.0079681924 9616660561 5465883474 674 D0 /
  92. DATA WG ( 2) / 0.0184664683 1109095914 2302131912 047 D0 /
  93. DATA WG ( 3) / 0.0287847078 8332336934 9719179611 292 D0 /
  94. DATA WG ( 4) / 0.0387991925 6962704959 6801936446 348 D0 /
  95. DATA WG ( 5) / 0.0484026728 3059405290 2938140422 808 D0 /
  96. DATA WG ( 6) / 0.0574931562 1761906648 1721689402 056 D0 /
  97. DATA WG ( 7) / 0.0659742298 8218049512 8128515115 962 D0 /
  98. DATA WG ( 8) / 0.0737559747 3770520626 8243850022 191 D0 /
  99. DATA WG ( 9) / 0.0807558952 2942021535 4694938460 530 D0 /
  100. DATA WG ( 10) / 0.0868997872 0108297980 2387530715 126 D0 /
  101. DATA WG ( 11) / 0.0921225222 3778612871 7632707087 619 D0 /
  102. DATA WG ( 12) / 0.0963687371 7464425963 9468626351 810 D0 /
  103. DATA WG ( 13) / 0.0995934205 8679526706 2780282103 569 D0 /
  104. DATA WG ( 14) / 0.1017623897 4840550459 6428952168 554 D0 /
  105. DATA WG ( 15) / 0.1028526528 9355884034 1285636705 415 D0 /
  106. C
  107. DATA XGK ( 1) / 0.9994844100 5049063757 1325895705 811 D0 /
  108. DATA XGK ( 2) / 0.9968934840 7464954027 1630050918 695 D0 /
  109. DATA XGK ( 3) / 0.9916309968 7040459485 8628366109 486 D0 /
  110. DATA XGK ( 4) / 0.9836681232 7974720997 0032581605 663 D0 /
  111. DATA XGK ( 5) / 0.9731163225 0112626837 4693868423 707 D0 /
  112. DATA XGK ( 6) / 0.9600218649 6830751221 6871025581 798 D0 /
  113. DATA XGK ( 7) / 0.9443744447 4855997941 5831324037 439 D0 /
  114. DATA XGK ( 8) / 0.9262000474 2927432587 9324277080 474 D0 /
  115. DATA XGK ( 9) / 0.9055733076 9990779854 6522558925 958 D0 /
  116. DATA XGK ( 10) / 0.8825605357 9205268154 3116462530 226 D0 /
  117. DATA XGK ( 11) / 0.8572052335 4606109895 8658510658 944 D0 /
  118. DATA XGK ( 12) / 0.8295657623 8276839744 2898119732 502 D0 /
  119. DATA XGK ( 13) / 0.7997278358 2183908301 3668942322 683 D0 /
  120. DATA XGK ( 14) / 0.7677774321 0482619491 7977340974 503 D0 /
  121. DATA XGK ( 15) / 0.7337900624 5322680472 6171131369 528 D0 /
  122. DATA XGK ( 16) / 0.6978504947 9331579693 2292388026 640 D0 /
  123. DATA XGK ( 17) / 0.6600610641 2662696137 0053668149 271 D0 /
  124. DATA XGK ( 18) / 0.6205261829 8924286114 0477556431 189 D0 /
  125. DATA XGK ( 19) / 0.5793452358 2636169175 6024932172 540 D0 /
  126. DATA XGK ( 20) / 0.5366241481 4201989926 4169793311 073 D0 /
  127. DATA XGK ( 21) / 0.4924804678 6177857499 3693061207 709 D0 /
  128. DATA XGK ( 22) / 0.4470337695 3808917678 0609900322 854 D0 /
  129. DATA XGK ( 23) / 0.4004012548 3039439253 5476211542 661 D0 /
  130. DATA XGK ( 24) / 0.3527047255 3087811347 1037207089 374 D0 /
  131. DATA XGK ( 25) / 0.3040732022 7362507737 2677107199 257 D0 /
  132. DATA XGK ( 26) / 0.2546369261 6788984643 9805129817 805 D0 /
  133. DATA XGK ( 27) / 0.2045251166 8230989143 8957671002 025 D0 /
  134. DATA XGK ( 28) / 0.1538699136 0858354696 3794672743 256 D0 /
  135. DATA XGK ( 29) / 0.1028069379 6673703014 7096751318 001 D0 /
  136. DATA XGK ( 30) / 0.0514718425 5531769583 3025213166 723 D0 /
  137. DATA XGK ( 31) / 0.0000000000 0000000000 0000000000 000 D0 /
  138. C
  139. DATA WGK ( 1) / 0.0013890136 9867700762 4551591226 760 D0 /
  140. DATA WGK ( 2) / 0.0038904611 2709988405 1267201844 516 D0 /
  141. DATA WGK ( 3) / 0.0066307039 1593129217 3319826369 750 D0 /
  142. DATA WGK ( 4) / 0.0092732796 5951776342 8441146892 024 D0 /
  143. DATA WGK ( 5) / 0.0118230152 5349634174 2232898853 251 D0 /
  144. DATA WGK ( 6) / 0.0143697295 0704580481 2451432443 580 D0 /
  145. DATA WGK ( 7) / 0.0169208891 8905327262 7572289420 322 D0 /
  146. DATA WGK ( 8) / 0.0194141411 9394238117 3408951050 128 D0 /
  147. DATA WGK ( 9) / 0.0218280358 2160919229 7167485738 339 D0 /
  148. DATA WGK ( 10) / 0.0241911620 7808060136 5686370725 232 D0 /
  149. DATA WGK ( 11) / 0.0265099548 8233310161 0601709335 075 D0 /
  150. DATA WGK ( 12) / 0.0287540487 6504129284 3978785354 334 D0 /
  151. DATA WGK ( 13) / 0.0309072575 6238776247 2884252943 092 D0 /
  152. DATA WGK ( 14) / 0.0329814470 5748372603 1814191016 854 D0 /
  153. DATA WGK ( 15) / 0.0349793380 2806002413 7499670731 468 D0 /
  154. DATA WGK ( 16) / 0.0368823646 5182122922 3911065617 136 D0 /
  155. DATA WGK ( 17) / 0.0386789456 2472759295 0348651532 281 D0 /
  156. DATA WGK ( 18) / 0.0403745389 5153595911 1995279752 468 D0 /
  157. DATA WGK ( 19) / 0.0419698102 1516424614 7147541285 970 D0 /
  158. DATA WGK ( 20) / 0.0434525397 0135606931 6831728117 073 D0 /
  159. DATA WGK ( 21) / 0.0448148001 3316266319 2355551616 723 D0 /
  160. DATA WGK ( 22) / 0.0460592382 7100698811 6271735559 374 D0 /
  161. DATA WGK ( 23) / 0.0471855465 6929915394 5261478181 099 D0 /
  162. DATA WGK ( 24) / 0.0481858617 5708712914 0779492298 305 D0 /
  163. DATA WGK ( 25) / 0.0490554345 5502977888 7528165367 238 D0 /
  164. DATA WGK ( 26) / 0.0497956834 2707420635 7811569379 942 D0 /
  165. DATA WGK ( 27) / 0.0504059214 0278234684 0893085653 585 D0 /
  166. DATA WGK ( 28) / 0.0508817958 9874960649 2297473049 805 D0 /
  167. DATA WGK ( 29) / 0.0512215478 4925877217 0656282604 944 D0 /
  168. DATA WGK ( 30) / 0.0514261285 3745902593 3862879215 781 D0 /
  169. DATA WGK ( 31) / 0.0514947294 2945156755 8340433647 099 D0 /
  170. C
  171. C LIST OF MAJOR VARIABLES
  172. C -----------------------
  173. C
  174. C CENTR - MID POINT OF THE INTERVAL
  175. C HLGTH - HALF-LENGTH OF THE INTERVAL
  176. C DABSC - ABSCISSA
  177. C FVAL* - FUNCTION VALUE
  178. C RESG - RESULT OF THE 30-POINT GAUSS RULE
  179. C RESK - RESULT OF THE 61-POINT KRONROD RULE
  180. C RESKH - APPROXIMATION TO THE MEAN VALUE OF F
  181. C OVER (A,B), I.E. TO I/(B-A)
  182. C
  183. C MACHINE DEPENDENT CONSTANTS
  184. C ---------------------------
  185. C
  186. C EPMACH IS THE LARGEST RELATIVE SPACING.
  187. C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
  188. C
  189. C***FIRST EXECUTABLE STATEMENT DQK61
  190. EPMACH = D1MACH(4)
  191. UFLOW = D1MACH(1)
  192. C
  193. CENTR = 0.5D+00*(B+A)
  194. HLGTH = 0.5D+00*(B-A)
  195. DHLGTH = ABS(HLGTH)
  196. C
  197. C COMPUTE THE 61-POINT KRONROD APPROXIMATION TO THE
  198. C INTEGRAL, AND ESTIMATE THE ABSOLUTE ERROR.
  199. C
  200. RESG = 0.0D+00
  201. FC = F(CENTR)
  202. RESK = WGK(31)*FC
  203. RESABS = ABS(RESK)
  204. DO 10 J=1,15
  205. JTW = J*2
  206. DABSC = HLGTH*XGK(JTW)
  207. FVAL1 = F(CENTR-DABSC)
  208. FVAL2 = F(CENTR+DABSC)
  209. FV1(JTW) = FVAL1
  210. FV2(JTW) = FVAL2
  211. FSUM = FVAL1+FVAL2
  212. RESG = RESG+WG(J)*FSUM
  213. RESK = RESK+WGK(JTW)*FSUM
  214. RESABS = RESABS+WGK(JTW)*(ABS(FVAL1)+ABS(FVAL2))
  215. 10 CONTINUE
  216. DO 15 J=1,15
  217. JTWM1 = J*2-1
  218. DABSC = HLGTH*XGK(JTWM1)
  219. FVAL1 = F(CENTR-DABSC)
  220. FVAL2 = F(CENTR+DABSC)
  221. FV1(JTWM1) = FVAL1
  222. FV2(JTWM1) = FVAL2
  223. FSUM = FVAL1+FVAL2
  224. RESK = RESK+WGK(JTWM1)*FSUM
  225. RESABS = RESABS+WGK(JTWM1)*(ABS(FVAL1)+ABS(FVAL2))
  226. 15 CONTINUE
  227. RESKH = RESK*0.5D+00
  228. RESASC = WGK(31)*ABS(FC-RESKH)
  229. DO 20 J=1,30
  230. RESASC = RESASC+WGK(J)*(ABS(FV1(J)-RESKH)+ABS(FV2(J)-RESKH))
  231. 20 CONTINUE
  232. RESULT = RESK*HLGTH
  233. RESABS = RESABS*DHLGTH
  234. RESASC = RESASC*DHLGTH
  235. ABSERR = ABS((RESK-RESG)*HLGTH)
  236. IF(RESASC.NE.0.0D+00.AND.ABSERR.NE.0.0D+00)
  237. 1 ABSERR = RESASC*MIN(0.1D+01,(0.2D+03*ABSERR/RESASC)**1.5D+00)
  238. IF(RESABS.GT.UFLOW/(0.5D+02*EPMACH)) ABSERR = MAX
  239. 1 ((EPMACH*0.5D+02)*RESABS,ABSERR)
  240. RETURN
  241. END