123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- *DECK DRF
- DOUBLE PRECISION FUNCTION DRF (X, Y, Z, IER)
- C***BEGIN PROLOGUE DRF
- C***PURPOSE Compute the incomplete or complete elliptic integral of the
- C 1st kind. For X, Y, and Z non-negative and at most one of
- C them zero, RF(X,Y,Z) = Integral from zero to infinity of
- C -1/2 -1/2 -1/2
- C (1/2)(t+X) (t+Y) (t+Z) dt.
- C If X, Y or Z is zero, the integral is complete.
- C***LIBRARY SLATEC
- C***CATEGORY C14
- C***TYPE DOUBLE PRECISION (RF-S, DRF-D)
- C***KEYWORDS COMPLETE ELLIPTIC INTEGRAL, DUPLICATION THEOREM,
- C INCOMPLETE ELLIPTIC INTEGRAL, INTEGRAL OF THE FIRST KIND,
- C TAYLOR SERIES
- C***AUTHOR Carlson, B. C.
- C Ames Laboratory-DOE
- C Iowa State University
- C Ames, IA 50011
- C Notis, E. M.
- C Ames Laboratory-DOE
- C Iowa State University
- C Ames, IA 50011
- C Pexton, R. L.
- C Lawrence Livermore National Laboratory
- C Livermore, CA 94550
- C***DESCRIPTION
- C
- C 1. DRF
- C Evaluate an INCOMPLETE (or COMPLETE) ELLIPTIC INTEGRAL
- C of the first kind
- C Standard FORTRAN function routine
- C Double precision version
- C The routine calculates an approximation result to
- C DRF(X,Y,Z) = Integral from zero to infinity of
- C
- C -1/2 -1/2 -1/2
- C (1/2)(t+X) (t+Y) (t+Z) dt,
- C
- C where X, Y, and Z are nonnegative and at most one of them
- C is zero. If one of them is zero, the integral is COMPLETE.
- C The duplication theorem is iterated until the variables are
- C nearly equal, and the function is then expanded in Taylor
- C series to fifth order.
- C
- C 2. Calling sequence
- C DRF( X, Y, Z, IER )
- C
- C Parameters On entry
- C Values assigned by the calling routine
- C
- C X - Double precision, nonnegative variable
- C
- C Y - Double precision, nonnegative variable
- C
- C Z - Double precision, nonnegative variable
- C
- C
- C
- C On Return (values assigned by the DRF routine)
- C
- C DRF - Double precision approximation to the integral
- C
- C IER - Integer
- C
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C
- C IER > 0 Abnormal termination of the routine
- C
- C X, Y, Z are unaltered.
- C
- C
- C 3. Error Messages
- C
- C
- C Value of IER assigned by the DRF routine
- C
- C Value assigned Error Message Printed
- C IER = 1 MIN(X,Y,Z) .LT. 0.0D0
- C = 2 MIN(X+Y,X+Z,Y+Z) .LT. LOLIM
- C = 3 MAX(X,Y,Z) .GT. UPLIM
- C
- C
- C
- C 4. Control Parameters
- C
- C Values of LOLIM, UPLIM, and ERRTOL are set by the
- C routine.
- C
- C LOLIM and UPLIM determine the valid range of X, Y and Z
- C
- C LOLIM - Lower limit of valid arguments
- C
- C Not less than 5 * (machine minimum).
- C
- C UPLIM - Upper limit of valid arguments
- C
- C Not greater than (machine maximum) / 5.
- C
- C
- C Acceptable values for: LOLIM UPLIM
- C IBM 360/370 SERIES : 3.0D-78 1.0D+75
- C CDC 6000/7000 SERIES : 1.0D-292 1.0D+321
- C UNIVAC 1100 SERIES : 1.0D-307 1.0D+307
- C CRAY : 2.3D-2466 1.09D+2465
- C VAX 11 SERIES : 1.5D-38 3.0D+37
- C
- C
- C
- C ERRTOL determines the accuracy of the answer
- C
- C The value assigned by the routine will result
- C in solution precision within 1-2 decimals of
- C "machine precision".
- C
- C
- C
- C ERRTOL - Relative error due to truncation is less than
- C ERRTOL ** 6 / (4 * (1-ERRTOL) .
- C
- C
- C
- C The accuracy of the computed approximation to the integral
- C can be controlled by choosing the value of ERRTOL.
- C Truncation of a Taylor series after terms of fifth order
- C introduces an error less than the amount shown in the
- C second column of the following table for each value of
- C ERRTOL in the first column. In addition to the truncation
- C error there will be round-off error, but in practice the
- C total error from both sources is usually less than the
- C amount given in the table.
- C
- C
- C
- C
- C
- C Sample choices: ERRTOL Relative Truncation
- C error less than
- C 1.0D-3 3.0D-19
- C 3.0D-3 2.0D-16
- C 1.0D-2 3.0D-13
- C 3.0D-2 2.0D-10
- C 1.0D-1 3.0D-7
- C
- C
- C Decreasing ERRTOL by a factor of 10 yields six more
- C decimal digits of accuracy at the expense of one or
- C two more iterations of the duplication theorem.
- C
- C *Long Description:
- C
- C DRF Special Comments
- C
- C
- C
- C Check by addition theorem: DRF(X,X+Z,X+W) + DRF(Y,Y+Z,Y+W)
- C = DRF(0,Z,W), where X,Y,Z,W are positive and X * Y = Z * W.
- C
- C
- C On Input:
- C
- C X, Y, and Z are the variables in the integral DRF(X,Y,Z).
- C
- C
- C On Output:
- C
- C
- C X, Y, Z are unaltered.
- C
- C
- C
- C ********************************************************
- C
- C WARNING: Changes in the program may improve speed at the
- C expense of robustness.
- C
- C
- C
- C Special double precision functions via DRF
- C
- C
- C
- C
- C Legendre form of ELLIPTIC INTEGRAL of 1st kind
- C
- C -----------------------------------------
- C
- C
- C
- C 2 2 2
- C F(PHI,K) = SIN(PHI) DRF(COS (PHI),1-K SIN (PHI),1)
- C
- C
- C 2
- C K(K) = DRF(0,1-K ,1)
- C
- C
- C PI/2 2 2 -1/2
- C = INT (1-K SIN (PHI) ) D PHI
- C 0
- C
- C
- C
- C Bulirsch form of ELLIPTIC INTEGRAL of 1st kind
- C
- C -----------------------------------------
- C
- C
- C 2 2 2
- C EL1(X,KC) = X DRF(1,1+KC X ,1+X )
- C
- C
- C Lemniscate constant A
- C
- C -----------------------------------------
- C
- C
- C 1 4 -1/2
- C A = INT (1-S ) DS = DRF(0,1,2) = DRF(0,2,1)
- C 0
- C
- C
- C
- C -------------------------------------------------------------------
- C
- C***REFERENCES B. C. Carlson and E. M. Notis, Algorithms for incomplete
- C elliptic integrals, ACM Transactions on Mathematical
- C Software 7, 3 (September 1981), pp. 398-403.
- C B. C. Carlson, Computing elliptic integrals by
- C duplication, Numerische Mathematik 33, (1979),
- C pp. 1-16.
- C B. C. Carlson, Elliptic integrals of the first kind,
- C SIAM Journal of Mathematical Analysis 8, (1977),
- C pp. 231-242.
- C***ROUTINES CALLED D1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 790801 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891009 Removed unreferenced statement labels. (WRB)
- C 891009 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 900510 Changed calls to XERMSG to standard form, and some
- C editorial changes. (RWC))
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DRF
- CHARACTER*16 XERN3, XERN4, XERN5, XERN6
- INTEGER IER
- DOUBLE PRECISION LOLIM, UPLIM, EPSLON, ERRTOL, D1MACH
- DOUBLE PRECISION C1, C2, C3, E2, E3, LAMDA
- DOUBLE PRECISION MU, S, X, XN, XNDEV
- DOUBLE PRECISION XNROOT, Y, YN, YNDEV, YNROOT, Z, ZN, ZNDEV,
- * ZNROOT
- LOGICAL FIRST
- SAVE ERRTOL,LOLIM,UPLIM,C1,C2,C3,FIRST
- DATA FIRST /.TRUE./
- C
- C***FIRST EXECUTABLE STATEMENT DRF
- C
- IF (FIRST) THEN
- ERRTOL = (4.0D0*D1MACH(3))**(1.0D0/6.0D0)
- LOLIM = 5.0D0 * D1MACH(1)
- UPLIM = D1MACH(2)/5.0D0
- C
- C1 = 1.0D0/24.0D0
- C2 = 3.0D0/44.0D0
- C3 = 1.0D0/14.0D0
- ENDIF
- FIRST = .FALSE.
- C
- C CALL ERROR HANDLER IF NECESSARY.
- C
- DRF = 0.0D0
- IF (MIN(X,Y,Z).LT.0.0D0) THEN
- IER = 1
- WRITE (XERN3, '(1PE15.6)') X
- WRITE (XERN4, '(1PE15.6)') Y
- WRITE (XERN5, '(1PE15.6)') Z
- CALL XERMSG ('SLATEC', 'DRF',
- * 'MIN(X,Y,Z).LT.0 WHERE X = ' // XERN3 // ' Y = ' // XERN4 //
- * ' AND Z = ' // XERN5, 1, 1)
- RETURN
- ENDIF
- C
- IF (MAX(X,Y,Z).GT.UPLIM) THEN
- IER = 3
- WRITE (XERN3, '(1PE15.6)') X
- WRITE (XERN4, '(1PE15.6)') Y
- WRITE (XERN5, '(1PE15.6)') Z
- WRITE (XERN6, '(1PE15.6)') UPLIM
- CALL XERMSG ('SLATEC', 'DRF',
- * 'MAX(X,Y,Z).GT.UPLIM WHERE X = ' // XERN3 // ' Y = ' //
- * XERN4 // ' Z = ' // XERN5 // ' AND UPLIM = ' // XERN6, 3, 1)
- RETURN
- ENDIF
- C
- IF (MIN(X+Y,X+Z,Y+Z).LT.LOLIM) THEN
- IER = 2
- WRITE (XERN3, '(1PE15.6)') X
- WRITE (XERN4, '(1PE15.6)') Y
- WRITE (XERN5, '(1PE15.6)') Z
- WRITE (XERN6, '(1PE15.6)') LOLIM
- CALL XERMSG ('SLATEC', 'DRF',
- * 'MIN(X+Y,X+Z,Y+Z).LT.LOLIM WHERE X = ' // XERN3 //
- * ' Y = ' // XERN4 // ' Z = ' // XERN5 // ' AND LOLIM = ' //
- * XERN6, 2, 1)
- RETURN
- ENDIF
- C
- IER = 0
- XN = X
- YN = Y
- ZN = Z
- C
- 30 MU = (XN+YN+ZN)/3.0D0
- XNDEV = 2.0D0 - (MU+XN)/MU
- YNDEV = 2.0D0 - (MU+YN)/MU
- ZNDEV = 2.0D0 - (MU+ZN)/MU
- EPSLON = MAX(ABS(XNDEV),ABS(YNDEV),ABS(ZNDEV))
- IF (EPSLON.LT.ERRTOL) GO TO 40
- XNROOT = SQRT(XN)
- YNROOT = SQRT(YN)
- ZNROOT = SQRT(ZN)
- LAMDA = XNROOT*(YNROOT+ZNROOT) + YNROOT*ZNROOT
- XN = (XN+LAMDA)*0.250D0
- YN = (YN+LAMDA)*0.250D0
- ZN = (ZN+LAMDA)*0.250D0
- GO TO 30
- C
- 40 E2 = XNDEV*YNDEV - ZNDEV*ZNDEV
- E3 = XNDEV*YNDEV*ZNDEV
- S = 1.0D0 + (C1*E2-0.10D0-C2*E3)*E2 + C3*E3
- DRF = S/SQRT(MU)
- C
- RETURN
- END
|