123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- *DECK DS2Y
- SUBROUTINE DS2Y (N, NELT, IA, JA, A, ISYM)
- C***BEGIN PROLOGUE DS2Y
- C***PURPOSE SLAP Triad to SLAP Column Format Converter.
- C Routine to convert from the SLAP Triad to SLAP Column
- C format.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D1B9
- C***TYPE DOUBLE PRECISION (SS2Y-S, DS2Y-D)
- C***KEYWORDS LINEAR SYSTEM, SLAP SPARSE
- C***AUTHOR Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM
- C DOUBLE PRECISION A(NELT)
- C
- C CALL DS2Y( N, NELT, IA, JA, A, ISYM )
- C
- C *Arguments:
- C N :IN Integer
- C Order of the Matrix.
- C NELT :IN Integer.
- C Number of non-zeros stored in A.
- C IA :INOUT Integer IA(NELT).
- C JA :INOUT Integer JA(NELT).
- C A :INOUT Double Precision A(NELT).
- C These arrays should hold the matrix A in either the SLAP
- C Triad format or the SLAP Column format. See "Description",
- C below. If the SLAP Triad format is used, this format is
- C translated to the SLAP Column format by this routine.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the lower
- C triangle of the matrix is stored.
- C
- C *Description:
- C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
- C data structures: 1) the SLAP Triad format or 2) the SLAP
- C Column format. The user can hand this routine either of the
- C of these data structures. If the SLAP Triad format is give
- C as input then this routine transforms it into SLAP Column
- C format. The way this routine tells which format is given as
- C input is to look at JA(N+1). If JA(N+1) = NELT+1 then we
- C have the SLAP Column format. If that equality does not hold
- C then it is assumed that the IA, JA, A arrays contain the
- C SLAP Triad format.
- C
- C =================== S L A P Triad format ===================
- C This routine requires that the matrix A be stored in the
- C SLAP Triad format. In this format only the non-zeros are
- C stored. They may appear in *ANY* order. The user supplies
- C three arrays of length NELT, where NELT is the number of
- C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
- C each non-zero the user puts the row and column index of that
- C matrix element in the IA and JA arrays. The value of the
- C non-zero matrix element is placed in the corresponding
- C location of the A array. This is an extremely easy data
- C structure to generate. On the other hand it is not too
- C efficient on vector computers for the iterative solution of
- C linear systems. Hence, SLAP changes this input data
- C structure to the SLAP Column format for the iteration (but
- C does not change it back).
- C
- C Here is an example of the SLAP Triad storage format for a
- C 5x5 Matrix. Recall that the entries may appear in any order.
- C
- C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
- C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
- C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C =================== S L A P Column format ==================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Column format. In this format the non-zeros are stored
- C counting down columns (except for the diagonal entry, which
- C must appear first in each "column") and are stored in the
- C double precision array A. In other words, for each column
- C in the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
- C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
- C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
- C Note that we always have JA(N+1) = NELT+1, where N is the
- C number of columns in the matrix and NELT is the number of
- C non-zeros in the matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QS2I1D
- C***REVISION HISTORY (YYMMDD)
- C 871119 DATE WRITTEN
- C 881213 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 910502 Corrected C***FIRST EXECUTABLE STATEMENT line. (FNF)
- C 920511 Added complete declaration section. (WRB)
- C 930701 Updated CATEGORY section. (FNF, WRB)
- C***END PROLOGUE DS2Y
- C .. Scalar Arguments ..
- INTEGER ISYM, N, NELT
- C .. Array Arguments ..
- DOUBLE PRECISION A(NELT)
- INTEGER IA(NELT), JA(NELT)
- C .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I, IBGN, ICOL, IEND, ITEMP, J
- C .. External Subroutines ..
- EXTERNAL QS2I1D
- C***FIRST EXECUTABLE STATEMENT DS2Y
- C
- C Check to see if the (IA,JA,A) arrays are in SLAP Column
- C format. If it's not then transform from SLAP Triad.
- C
- IF( JA(N+1).EQ.NELT+1 ) RETURN
- C
- C Sort into ascending order by COLUMN (on the ja array).
- C This will line up the columns.
- C
- CALL QS2I1D( JA, IA, A, NELT, 1 )
- C
- C Loop over each column to see where the column indices change
- C in the column index array ja. This marks the beginning of the
- C next column.
- C
- CVD$R NOVECTOR
- JA(1) = 1
- DO 20 ICOL = 1, N-1
- DO 10 J = JA(ICOL)+1, NELT
- IF( JA(J).NE.ICOL ) THEN
- JA(ICOL+1) = J
- GOTO 20
- ENDIF
- 10 CONTINUE
- 20 CONTINUE
- JA(N+1) = NELT+1
- C
- C Mark the n+2 element so that future calls to a SLAP routine
- C utilizing the YSMP-Column storage format will be able to tell.
- C
- JA(N+2) = 0
- C
- C Now loop through the IA array making sure that the diagonal
- C matrix element appears first in the column. Then sort the
- C rest of the column in ascending order.
- C
- DO 70 ICOL = 1, N
- IBGN = JA(ICOL)
- IEND = JA(ICOL+1)-1
- DO 30 I = IBGN, IEND
- IF( IA(I).EQ.ICOL ) THEN
- C
- C Swap the diagonal element with the first element in the
- C column.
- C
- ITEMP = IA(I)
- IA(I) = IA(IBGN)
- IA(IBGN) = ITEMP
- TEMP = A(I)
- A(I) = A(IBGN)
- A(IBGN) = TEMP
- GOTO 40
- ENDIF
- 30 CONTINUE
- 40 IBGN = IBGN + 1
- IF( IBGN.LT.IEND ) THEN
- DO 60 I = IBGN, IEND
- DO 50 J = I+1, IEND
- IF( IA(I).GT.IA(J) ) THEN
- ITEMP = IA(I)
- IA(I) = IA(J)
- IA(J) = ITEMP
- TEMP = A(I)
- A(I) = A(J)
- A(J) = TEMP
- ENDIF
- 50 CONTINUE
- 60 CONTINUE
- ENDIF
- 70 CONTINUE
- RETURN
- C------------- LAST LINE OF DS2Y FOLLOWS ----------------------------
- END
|