123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- *DECK DSBMV
- SUBROUTINE DSBMV (UPLO, N, K, ALPHA, A, LDA, X, INCX, BETA, Y,
- $ INCY)
- C***BEGIN PROLOGUE DSBMV
- C***PURPOSE Perform the matrix-vector operation.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B4
- C***TYPE DOUBLE PRECISION (SSBMV-S, DSBMV-D, CSBMV-C)
- C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J. J., (ANL)
- C Du Croz, J., (NAG)
- C Hammarling, S., (NAG)
- C Hanson, R. J., (SNLA)
- C***DESCRIPTION
- C
- C DSBMV performs the matrix-vector operation
- C
- C y := alpha*A*x + beta*y,
- C
- C where alpha and beta are scalars, x and y are n element vectors and
- C A is an n by n symmetric band matrix, with k super-diagonals.
- C
- C Parameters
- C ==========
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the upper or lower
- C triangular part of the band matrix A is being supplied as
- C follows:
- C
- C UPLO = 'U' or 'u' The upper triangular part of A is
- C being supplied.
- C
- C UPLO = 'L' or 'l' The lower triangular part of A is
- C being supplied.
- C
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the order of the matrix A.
- C N must be at least zero.
- C Unchanged on exit.
- C
- C K - INTEGER.
- C On entry, K specifies the number of super-diagonals of the
- C matrix A. K must satisfy 0 .le. K.
- C Unchanged on exit.
- C
- C ALPHA - DOUBLE PRECISION.
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
- C Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
- C by n part of the array A must contain the upper triangular
- C band part of the symmetric matrix, supplied column by
- C column, with the leading diagonal of the matrix in row
- C ( k + 1 ) of the array, the first super-diagonal starting at
- C position 2 in row k, and so on. The top left k by k triangle
- C of the array A is not referenced.
- C The following program segment will transfer the upper
- C triangular part of a symmetric band matrix from conventional
- C full matrix storage to band storage:
- C
- C DO 20, J = 1, N
- C M = K + 1 - J
- C DO 10, I = MAX( 1, J - K ), J
- C A( M + I, J ) = matrix( I, J )
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
- C by n part of the array A must contain the lower triangular
- C band part of the symmetric matrix, supplied column by
- C column, with the leading diagonal of the matrix in row 1 of
- C the array, the first sub-diagonal starting at position 1 in
- C row 2, and so on. The bottom right k by k triangle of the
- C array A is not referenced.
- C The following program segment will transfer the lower
- C triangular part of a symmetric band matrix from conventional
- C full matrix storage to band storage:
- C
- C DO 20, J = 1, N
- C M = 1 - J
- C DO 10, I = J, MIN( N, J + K )
- C A( M + I, J ) = matrix( I, J )
- C 10 CONTINUE
- C 20 CONTINUE
- C
- C Unchanged on exit.
- C
- C LDA - INTEGER.
- C On entry, LDA specifies the first dimension of A as declared
- C in the calling (sub) program. LDA must be at least
- C ( k + 1 ).
- C Unchanged on exit.
- C
- C X - DOUBLE PRECISION array of DIMENSION at least
- C ( 1 + ( n - 1 )*abs( INCX ) ).
- C Before entry, the incremented array X must contain the
- C vector x.
- C Unchanged on exit.
- C
- C INCX - INTEGER.
- C On entry, INCX specifies the increment for the elements of
- C X. INCX must not be zero.
- C Unchanged on exit.
- C
- C BETA - DOUBLE PRECISION.
- C On entry, BETA specifies the scalar beta.
- C Unchanged on exit.
- C
- C Y - DOUBLE PRECISION array of DIMENSION at least
- C ( 1 + ( n - 1 )*abs( INCY ) ).
- C Before entry, the incremented array Y must contain the
- C vector y. On exit, Y is overwritten by the updated vector y.
- C
- C INCY - INTEGER.
- C On entry, INCY specifies the increment for the elements of
- C Y. INCY must not be zero.
- C Unchanged on exit.
- C
- C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
- C Hanson, R. J. An extended set of Fortran basic linear
- C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
- C pp. 1-17, March 1988.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 861022 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE DSBMV
- C .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA, BETA
- INTEGER INCX, INCY, K, LDA, N
- CHARACTER*1 UPLO
- C .. Array Arguments ..
- DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
- C .. Parameters ..
- DOUBLE PRECISION ONE , ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- C .. Local Scalars ..
- DOUBLE PRECISION TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, KPLUS1, KX, KY, L
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C .. Intrinsic Functions ..
- INTRINSIC MAX, MIN
- C***FIRST EXECUTABLE STATEMENT DSBMV
- C
- C Test the input parameters.
- C
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( K.LT.0 )THEN
- INFO = 3
- ELSE IF( LDA.LT.( K + 1 ) )THEN
- INFO = 6
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 8
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 11
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DSBMV ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
- $ RETURN
- C
- C Set up the start points in X and Y.
- C
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- C
- C Start the operations. In this version the elements of the array A
- C are accessed sequentially with one pass through A.
- C
- C First form y := beta*y.
- C
- IF( BETA.NE.ONE )THEN
- IF( INCY.EQ.1 )THEN
- IF( BETA.EQ.ZERO )THEN
- DO 10, I = 1, N
- Y( I ) = ZERO
- 10 CONTINUE
- ELSE
- DO 20, I = 1, N
- Y( I ) = BETA*Y( I )
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF( BETA.EQ.ZERO )THEN
- DO 30, I = 1, N
- Y( IY ) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40, I = 1, N
- Y( IY ) = BETA*Y( IY )
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF( ALPHA.EQ.ZERO )
- $ RETURN
- IF( LSAME( UPLO, 'U' ) )THEN
- C
- C Form y when upper triangle of A is stored.
- C
- KPLUS1 = K + 1
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50, I = MAX( 1, J - K ), J - 1
- Y( I ) = Y( I ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( I )
- 50 CONTINUE
- Y( J ) = Y( J ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70, I = MAX( 1, J - K ), J - 1
- Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( IX )
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y( JY ) = Y( JY ) + TEMP1*A( KPLUS1, J ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF( J.GT.K )THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
- C
- C Form y when lower triangle of A is stored.
- C
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 100, J = 1, N
- TEMP1 = ALPHA*X( J )
- TEMP2 = ZERO
- Y( J ) = Y( J ) + TEMP1*A( 1, J )
- L = 1 - J
- DO 90, I = J + 1, MIN( N, J + K )
- Y( I ) = Y( I ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( I )
- 90 CONTINUE
- Y( J ) = Y( J ) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120, J = 1, N
- TEMP1 = ALPHA*X( JX )
- TEMP2 = ZERO
- Y( JY ) = Y( JY ) + TEMP1*A( 1, J )
- L = 1 - J
- IX = JX
- IY = JY
- DO 110, I = J + 1, MIN( N, J + K )
- IX = IX + INCX
- IY = IY + INCY
- Y( IY ) = Y( IY ) + TEMP1*A( L + I, J )
- TEMP2 = TEMP2 + A( L + I, J )*X( IX )
- 110 CONTINUE
- Y( JY ) = Y( JY ) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
- C
- RETURN
- C
- C End of DSBMV .
- C
- END
|