dsdbcg.f 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. *DECK DSDBCG
  2. SUBROUTINE DSDBCG (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  3. + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
  4. C***BEGIN PROLOGUE DSDBCG
  5. C***PURPOSE Diagonally Scaled BiConjugate Gradient Sparse Ax=b Solver.
  6. C Routine to solve a linear system Ax = b using the
  7. C BiConjugate Gradient method with diagonal scaling.
  8. C***LIBRARY SLATEC (SLAP)
  9. C***CATEGORY D2A4, D2B4
  10. C***TYPE DOUBLE PRECISION (SSDBCG-S, DSDBCG-D)
  11. C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM, SLAP,
  12. C SPARSE
  13. C***AUTHOR Greenbaum, Anne, (Courant Institute)
  14. C Seager, Mark K., (LLNL)
  15. C Lawrence Livermore National Laboratory
  16. C PO BOX 808, L-60
  17. C Livermore, CA 94550 (510) 423-3141
  18. C seager@llnl.gov
  19. C***DESCRIPTION
  20. C
  21. C *Usage:
  22. C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
  23. C INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
  24. C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)
  25. C
  26. C CALL DSDBCG(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  27. C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW )
  28. C
  29. C *Arguments:
  30. C N :IN Integer
  31. C Order of the Matrix.
  32. C B :IN Double Precision B(N).
  33. C Right-hand side vector.
  34. C X :INOUT Double Precision X(N).
  35. C On input X is your initial guess for solution vector.
  36. C On output X is the final approximate solution.
  37. C NELT :IN Integer.
  38. C Number of Non-Zeros stored in A.
  39. C IA :INOUT Integer IA(NELT).
  40. C JA :INOUT Integer JA(NELT).
  41. C A :INOUT Double Precision A(NELT).
  42. C These arrays should hold the matrix A in either the SLAP
  43. C Triad format or the SLAP Column format. See "Description",
  44. C below. If the SLAP Triad format is chosen it is changed
  45. C internally to the SLAP Column format.
  46. C ISYM :IN Integer.
  47. C Flag to indicate symmetric storage format.
  48. C If ISYM=0, all non-zero entries of the matrix are stored.
  49. C If ISYM=1, the matrix is symmetric, and only the upper
  50. C or lower triangle of the matrix is stored.
  51. C ITOL :IN Integer.
  52. C Flag to indicate type of convergence criterion.
  53. C If ITOL=1, iteration stops when the 2-norm of the residual
  54. C divided by the 2-norm of the right-hand side is less than TOL.
  55. C If ITOL=2, iteration stops when the 2-norm of M-inv times the
  56. C residual divided by the 2-norm of M-inv times the right hand
  57. C side is less than TOL, where M-inv is the inverse of the
  58. C diagonal of A.
  59. C ITOL=11 is often useful for checking and comparing different
  60. C routines. For this case, the user must supply the "exact"
  61. C solution or a very accurate approximation (one with an error
  62. C much less than TOL) through a common block,
  63. C COMMON /DSLBLK/ SOLN( )
  64. C If ITOL=11, iteration stops when the 2-norm of the difference
  65. C between the iterative approximation and the user-supplied
  66. C solution divided by the 2-norm of the user-supplied solution
  67. C is less than TOL. Note that this requires the user to set up
  68. C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
  69. C The routine with this declaration should be loaded before the
  70. C stop test so that the correct length is used by the loader.
  71. C This procedure is not standard Fortran and may not work
  72. C correctly on your system (although it has worked on every
  73. C system the authors have tried). If ITOL is not 11 then this
  74. C common block is indeed standard Fortran.
  75. C TOL :INOUT Double Precision.
  76. C Convergence criterion, as described above. (Reset if IERR=4.)
  77. C ITMAX :IN Integer.
  78. C Maximum number of iterations.
  79. C ITER :OUT Integer.
  80. C Number of iterations required to reach convergence, or
  81. C ITMAX+1 if convergence criterion could not be achieved in
  82. C ITMAX iterations.
  83. C ERR :OUT Double Precision.
  84. C Error estimate of error in final approximate solution, as
  85. C defined by ITOL.
  86. C IERR :OUT Integer.
  87. C Return error flag.
  88. C IERR = 0 => All went well.
  89. C IERR = 1 => Insufficient space allocated for WORK or IWORK.
  90. C IERR = 2 => Method failed to converge in ITMAX steps.
  91. C IERR = 3 => Error in user input.
  92. C Check input values of N, ITOL.
  93. C IERR = 4 => User error tolerance set too tight.
  94. C Reset to 500*D1MACH(3). Iteration proceeded.
  95. C IERR = 5 => Preconditioning matrix, M, is not positive
  96. C definite. (r,z) < 0.
  97. C IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
  98. C IUNIT :IN Integer.
  99. C Unit number on which to write the error at each iteration,
  100. C if this is desired for monitoring convergence. If unit
  101. C number is 0, no writing will occur.
  102. C RWORK :WORK Double Precision RWORK(LENW).
  103. C Double Precision array used for workspace.
  104. C LENW :IN Integer.
  105. C Length of the double precision workspace, RWORK.
  106. C LENW >= 8*N.
  107. C IWORK :WORK Integer IWORK(LENIW).
  108. C Used to hold pointers into the RWORK array.
  109. C LENIW :IN Integer.
  110. C Length of the integer workspace, IWORK. LENIW >= 10.
  111. C Upon return the following locations of IWORK hold information
  112. C which may be of use to the user:
  113. C IWORK(9) Amount of Integer workspace actually used.
  114. C IWORK(10) Amount of Double Precision workspace actually used.
  115. C
  116. C *Description:
  117. C This routine performs preconditioned BiConjugate gradient
  118. C method on the Non-Symmetric positive definite linear system
  119. C Ax=b. The preconditioner is M = DIAG(A), the diagonal of the
  120. C matrix A. This is the simplest of preconditioners and
  121. C vectorizes very well.
  122. C
  123. C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
  124. C data structures: 1) the SLAP Triad format or 2) the SLAP
  125. C Column format. The user can hand this routine either of the
  126. C of these data structures and SLAP will figure out which on
  127. C is being used and act accordingly.
  128. C
  129. C =================== S L A P Triad format ===================
  130. C
  131. C This routine requires that the matrix A be stored in the
  132. C SLAP Triad format. In this format only the non-zeros are
  133. C stored. They may appear in *ANY* order. The user supplies
  134. C three arrays of length NELT, where NELT is the number of
  135. C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
  136. C each non-zero the user puts the row and column index of that
  137. C matrix element in the IA and JA arrays. The value of the
  138. C non-zero matrix element is placed in the corresponding
  139. C location of the A array. This is an extremely easy data
  140. C structure to generate. On the other hand it is not too
  141. C efficient on vector computers for the iterative solution of
  142. C linear systems. Hence, SLAP changes this input data
  143. C structure to the SLAP Column format for the iteration (but
  144. C does not change it back).
  145. C
  146. C Here is an example of the SLAP Triad storage format for a
  147. C 5x5 Matrix. Recall that the entries may appear in any order.
  148. C
  149. C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
  150. C 1 2 3 4 5 6 7 8 9 10 11
  151. C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
  152. C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
  153. C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
  154. C | 0 0 0 44 0|
  155. C |51 0 53 0 55|
  156. C
  157. C =================== S L A P Column format ==================
  158. C
  159. C This routine requires that the matrix A be stored in the
  160. C SLAP Column format. In this format the non-zeros are stored
  161. C counting down columns (except for the diagonal entry, which
  162. C must appear first in each "column") and are stored in the
  163. C double precision array A. In other words, for each column
  164. C in the matrix put the diagonal entry in A. Then put in the
  165. C other non-zero elements going down the column (except the
  166. C diagonal) in order. The IA array holds the row index for
  167. C each non-zero. The JA array holds the offsets into the IA,
  168. C A arrays for the beginning of each column. That is,
  169. C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
  170. C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
  171. C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
  172. C Note that we always have JA(N+1) = NELT+1, where N is the
  173. C number of columns in the matrix and NELT is the number of
  174. C non-zeros in the matrix.
  175. C
  176. C Here is an example of the SLAP Column storage format for a
  177. C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
  178. C column):
  179. C
  180. C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
  181. C 1 2 3 4 5 6 7 8 9 10 11
  182. C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
  183. C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
  184. C | 0 0 33 0 35| JA: 1 4 6 8 9 12
  185. C | 0 0 0 44 0|
  186. C |51 0 53 0 55|
  187. C
  188. C *Side Effects:
  189. C The SLAP Triad format (IA, JA, A) is modified internally to
  190. C be the SLAP Column format. See above.
  191. C
  192. C *Cautions:
  193. C This routine will attempt to write to the Fortran logical output
  194. C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
  195. C this logical unit is attached to a file or terminal before calling
  196. C this routine with a non-zero value for IUNIT. This routine does
  197. C not check for the validity of a non-zero IUNIT unit number.
  198. C
  199. C***SEE ALSO DBCG, DLUBCG
  200. C***REFERENCES (NONE)
  201. C***ROUTINES CALLED DBCG, DCHKW, DS2Y, DSDI, DSDS, DSMTV, DSMV
  202. C***REVISION HISTORY (YYMMDD)
  203. C 890404 DATE WRITTEN
  204. C 890404 Previous REVISION DATE
  205. C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
  206. C 890921 Removed TeX from comments. (FNF)
  207. C 890922 Numerous changes to prologue to make closer to SLATEC
  208. C standard. (FNF)
  209. C 890929 Numerous changes to reduce SP/DP differences. (FNF)
  210. C 910411 Prologue converted to Version 4.0 format. (BAB)
  211. C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
  212. C 920511 Added complete declaration section. (WRB)
  213. C 921113 Corrected C***CATEGORY line. (FNF)
  214. C***END PROLOGUE DSDBCG
  215. C .. Parameters ..
  216. INTEGER LOCRB, LOCIB
  217. PARAMETER (LOCRB=1, LOCIB=11)
  218. C .. Scalar Arguments ..
  219. DOUBLE PRECISION ERR, TOL
  220. INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT
  221. C .. Array Arguments ..
  222. DOUBLE PRECISION A(N), B(N), RWORK(LENW), X(N)
  223. INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
  224. C .. Local Scalars ..
  225. INTEGER LOCDIN, LOCDZ, LOCIW, LOCP, LOCPP, LOCR, LOCRR, LOCW,
  226. + LOCZ, LOCZZ
  227. C .. External Subroutines ..
  228. EXTERNAL DBCG, DCHKW, DS2Y, DSDI, DSDS, DSMTV, DSMV
  229. C***FIRST EXECUTABLE STATEMENT DSDBCG
  230. C
  231. IERR = 0
  232. IF( N.LT.1 .OR. NELT.LT.1 ) THEN
  233. IERR = 3
  234. RETURN
  235. ENDIF
  236. C
  237. C Change the SLAP input matrix IA, JA, A to SLAP-Column format.
  238. CALL DS2Y( N, NELT, IA, JA, A, ISYM )
  239. C
  240. C Set up the workspace.
  241. LOCIW = LOCIB
  242. C
  243. LOCDIN = LOCRB
  244. LOCR = LOCDIN + N
  245. LOCZ = LOCR + N
  246. LOCP = LOCZ + N
  247. LOCRR = LOCP + N
  248. LOCZZ = LOCRR + N
  249. LOCPP = LOCZZ + N
  250. LOCDZ = LOCPP + N
  251. LOCW = LOCDZ + N
  252. C
  253. C Check the workspace allocations.
  254. CALL DCHKW( 'DSDBCG', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
  255. IF( IERR.NE.0 ) RETURN
  256. C
  257. IWORK(4) = LOCDIN
  258. IWORK(9) = LOCIW
  259. IWORK(10) = LOCW
  260. C
  261. C Compute the inverse of the diagonal of the matrix.
  262. CALL DSDS(N, NELT, IA, JA, A, ISYM, RWORK(LOCDIN))
  263. C
  264. C Perform the Diagonally Scaled BiConjugate gradient algorithm.
  265. CALL DBCG(N, B, X, NELT, IA, JA, A, ISYM, DSMV, DSMTV,
  266. $ DSDI, DSDI, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
  267. $ RWORK(LOCR), RWORK(LOCZ), RWORK(LOCP),
  268. $ RWORK(LOCRR), RWORK(LOCZZ), RWORK(LOCPP),
  269. $ RWORK(LOCDZ), RWORK(1), IWORK(1))
  270. RETURN
  271. C------------- LAST LINE OF DSDBCG FOLLOWS ----------------------------
  272. END