dsdcgn.f 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. *DECK DSDCGN
  2. SUBROUTINE DSDCGN (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  3. + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
  4. C***BEGIN PROLOGUE DSDCGN
  5. C***PURPOSE Diagonally Scaled CG Sparse Ax=b Solver for Normal Eqn's.
  6. C Routine to solve a general linear system Ax = b using
  7. C diagonal scaling with the Conjugate Gradient method
  8. C applied to the the normal equations, viz., AA'y = b,
  9. C where x = A'y.
  10. C***LIBRARY SLATEC (SLAP)
  11. C***CATEGORY D2A4, D2B4
  12. C***TYPE DOUBLE PRECISION (SSDCGN-S, DSDCGN-D)
  13. C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
  14. C SLAP, SPARSE
  15. C***AUTHOR Greenbaum, Anne, (Courant Institute)
  16. C Seager, Mark K., (LLNL)
  17. C Lawrence Livermore National Laboratory
  18. C PO BOX 808, L-60
  19. C Livermore, CA 94550 (510) 423-3141
  20. C seager@llnl.gov
  21. C***DESCRIPTION
  22. C
  23. C *Usage:
  24. C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
  25. C INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
  26. C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(8*N)
  27. C
  28. C CALL DSDCGN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  29. C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
  30. C
  31. C *Arguments:
  32. C N :IN Integer
  33. C Order of the Matrix.
  34. C B :IN Double Precision B(N).
  35. C Right-hand side vector.
  36. C X :INOUT Double Precision X(N).
  37. C On input X is your initial guess for solution vector.
  38. C On output X is the final approximate solution.
  39. C NELT :IN Integer.
  40. C Number of Non-Zeros stored in A.
  41. C IA :INOUT Integer IA(NELT).
  42. C JA :INOUT Integer JA(NELT).
  43. C A :INOUT Double Precision A(NELT).
  44. C These arrays should hold the matrix A in either the SLAP
  45. C Triad format or the SLAP Column format. See "Description",
  46. C below. If the SLAP Triad format is chosen it is changed
  47. C internally to the SLAP Column format.
  48. C ISYM :IN Integer.
  49. C Flag to indicate symmetric storage format.
  50. C If ISYM=0, all non-zero entries of the matrix are stored.
  51. C If ISYM=1, the matrix is symmetric, and only the upper
  52. C or lower triangle of the matrix is stored.
  53. C ITOL :IN Integer.
  54. C Flag to indicate type of convergence criterion.
  55. C If ITOL=1, iteration stops when the 2-norm of the residual
  56. C divided by the 2-norm of the right-hand side is less than TOL.
  57. C If ITOL=2, iteration stops when the 2-norm of M-inv times the
  58. C residual divided by the 2-norm of M-inv times the right hand
  59. C side is less than TOL, where M-inv is the inverse of the
  60. C diagonal of A.
  61. C ITOL=11 is often useful for checking and comparing different
  62. C routines. For this case, the user must supply the "exact"
  63. C solution or a very accurate approximation (one with an error
  64. C much less than TOL) through a common block,
  65. C COMMON /DSLBLK/ SOLN( )
  66. C If ITOL=11, iteration stops when the 2-norm of the difference
  67. C between the iterative approximation and the user-supplied
  68. C solution divided by the 2-norm of the user-supplied solution
  69. C is less than TOL. Note that this requires the user to set up
  70. C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
  71. C The routine with this declaration should be loaded before the
  72. C stop test so that the correct length is used by the loader.
  73. C This procedure is not standard Fortran and may not work
  74. C correctly on your system (although it has worked on every
  75. C system the authors have tried). If ITOL is not 11 then this
  76. C common block is indeed standard Fortran.
  77. C TOL :INOUT Double Precision.
  78. C Convergence criterion, as described above. (Reset if IERR=4.)
  79. C ITMAX :IN Integer.
  80. C Maximum number of iterations.
  81. C ITER :OUT Integer.
  82. C Number of iterations required to reach convergence, or
  83. C ITMAX+1 if convergence criterion could not be achieved in
  84. C ITMAX iterations.
  85. C ERR :OUT Double Precision.
  86. C Error estimate of error in final approximate solution, as
  87. C defined by ITOL.
  88. C IERR :OUT Integer.
  89. C Return error flag.
  90. C IERR = 0 => All went well.
  91. C IERR = 1 => Insufficient space allocated for WORK or IWORK.
  92. C IERR = 2 => Method failed to converge in ITMAX steps.
  93. C IERR = 3 => Error in user input.
  94. C Check input values of N, ITOL.
  95. C IERR = 4 => User error tolerance set too tight.
  96. C Reset to 500*D1MACH(3). Iteration proceeded.
  97. C IERR = 5 => Preconditioning matrix, M, is not positive
  98. C definite. (r,z) < 0.
  99. C IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
  100. C IUNIT :IN Integer.
  101. C Unit number on which to write the error at each iteration,
  102. C if this is desired for monitoring convergence. If unit
  103. C number is 0, no writing will occur.
  104. C RWORK :WORK Double Precision RWORK(LENW).
  105. C Double Precision array used for workspace.
  106. C LENW :IN Integer.
  107. C Length of the double precision workspace, RWORK.
  108. C LENW >= 8*N.
  109. C IWORK :WORK Integer IWORK(LENIW).
  110. C Used to hold pointers into the RWORK array.
  111. C Upon return the following locations of IWORK hold information
  112. C which may be of use to the user:
  113. C IWORK(9) Amount of Integer workspace actually used.
  114. C IWORK(10) Amount of Double Precision workspace actually used.
  115. C LENIW :IN Integer.
  116. C Length of the integer workspace, IWORK. LENIW >= 10.
  117. C
  118. C *Description:
  119. C This routine is simply a driver for the DCGN routine. It
  120. C calls the DSD2S routine to set up the preconditioning and
  121. C then calls DCGN with the appropriate MATVEC and MSOLVE
  122. C routines.
  123. C
  124. C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
  125. C data structures: 1) the SLAP Triad format or 2) the SLAP
  126. C Column format. The user can hand this routine either of the
  127. C of these data structures and SLAP will figure out which on
  128. C is being used and act accordingly.
  129. C
  130. C =================== S L A P Triad format ===================
  131. C
  132. C This routine requires that the matrix A be stored in the
  133. C SLAP Triad format. In this format only the non-zeros are
  134. C stored. They may appear in *ANY* order. The user supplies
  135. C three arrays of length NELT, where NELT is the number of
  136. C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
  137. C each non-zero the user puts the row and column index of that
  138. C matrix element in the IA and JA arrays. The value of the
  139. C non-zero matrix element is placed in the corresponding
  140. C location of the A array. This is an extremely easy data
  141. C structure to generate. On the other hand it is not too
  142. C efficient on vector computers for the iterative solution of
  143. C linear systems. Hence, SLAP changes this input data
  144. C structure to the SLAP Column format for the iteration (but
  145. C does not change it back).
  146. C
  147. C Here is an example of the SLAP Triad storage format for a
  148. C 5x5 Matrix. Recall that the entries may appear in any order.
  149. C
  150. C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
  151. C 1 2 3 4 5 6 7 8 9 10 11
  152. C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
  153. C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
  154. C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
  155. C | 0 0 0 44 0|
  156. C |51 0 53 0 55|
  157. C
  158. C =================== S L A P Column format ==================
  159. C
  160. C This routine requires that the matrix A be stored in the
  161. C SLAP Column format. In this format the non-zeros are stored
  162. C counting down columns (except for the diagonal entry, which
  163. C must appear first in each "column") and are stored in the
  164. C double precision array A. In other words, for each column
  165. C in the matrix put the diagonal entry in A. Then put in the
  166. C other non-zero elements going down the column (except the
  167. C diagonal) in order. The IA array holds the row index for
  168. C each non-zero. The JA array holds the offsets into the IA,
  169. C A arrays for the beginning of each column. That is,
  170. C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
  171. C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
  172. C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
  173. C Note that we always have JA(N+1) = NELT+1, where N is the
  174. C number of columns in the matrix and NELT is the number of
  175. C non-zeros in the matrix.
  176. C
  177. C Here is an example of the SLAP Column storage format for a
  178. C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
  179. C column):
  180. C
  181. C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
  182. C 1 2 3 4 5 6 7 8 9 10 11
  183. C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
  184. C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
  185. C | 0 0 33 0 35| JA: 1 4 6 8 9 12
  186. C | 0 0 0 44 0|
  187. C |51 0 53 0 55|
  188. C
  189. C *Side Effects:
  190. C The SLAP Triad format (IA, JA, A) is modified internally to be
  191. C the SLAP Column format. See above.
  192. C
  193. C *Cautions:
  194. C This routine will attempt to write to the Fortran logical output
  195. C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
  196. C this logical unit is attached to a file or terminal before calling
  197. C this routine with a non-zero value for IUNIT. This routine does
  198. C not check for the validity of a non-zero IUNIT unit number.
  199. C
  200. C***SEE ALSO DCGN, DSD2S, DSMV, DSMTV, DSDI
  201. C***REFERENCES (NONE)
  202. C***ROUTINES CALLED DCGN, DCHKW, DS2Y, DSD2S, DSDI, DSMTV, DSMV
  203. C***REVISION HISTORY (YYMMDD)
  204. C 890404 DATE WRITTEN
  205. C 890404 Previous REVISION DATE
  206. C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
  207. C 890921 Removed TeX from comments. (FNF)
  208. C 890922 Numerous changes to prologue to make closer to SLATEC
  209. C standard. (FNF)
  210. C 890929 Numerous changes to reduce SP/DP differences. (FNF)
  211. C 910411 Prologue converted to Version 4.0 format. (BAB)
  212. C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
  213. C 920511 Added complete declaration section. (WRB)
  214. C 921113 Corrected C***CATEGORY line. (FNF)
  215. C***END PROLOGUE DSDCGN
  216. C .. Parameters ..
  217. INTEGER LOCRB, LOCIB
  218. PARAMETER (LOCRB=1, LOCIB=11)
  219. C .. Scalar Arguments ..
  220. DOUBLE PRECISION ERR, TOL
  221. INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT
  222. C .. Array Arguments ..
  223. DOUBLE PRECISION A(NELT), B(N), RWORK(LENW), X(N)
  224. INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
  225. C .. Local Scalars ..
  226. INTEGER LOCATD, LOCATP, LOCATZ, LOCD, LOCDZ, LOCIW, LOCP, LOCR,
  227. + LOCW, LOCZ
  228. C .. External Subroutines ..
  229. EXTERNAL DCGN, DCHKW, DS2Y, DSD2S, DSDI, DSMTV, DSMV
  230. C***FIRST EXECUTABLE STATEMENT DSDCGN
  231. C
  232. IERR = 0
  233. IF( N.LT.1 .OR. NELT.LT.1 ) THEN
  234. IERR = 3
  235. RETURN
  236. ENDIF
  237. C
  238. C Modify the SLAP matrix data structure to YSMP-Column.
  239. CALL DS2Y( N, NELT, IA, JA, A, ISYM )
  240. C
  241. C Set up the work arrays.
  242. LOCIW = LOCIB
  243. C
  244. LOCD = LOCRB
  245. LOCR = LOCD + N
  246. LOCZ = LOCR + N
  247. LOCP = LOCZ + N
  248. LOCATP = LOCP + N
  249. LOCATZ = LOCATP + N
  250. LOCDZ = LOCATZ + N
  251. LOCATD = LOCDZ + N
  252. LOCW = LOCATD + N
  253. C
  254. C Check the workspace allocations.
  255. CALL DCHKW( 'DSDCGN', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
  256. IF( IERR.NE.0 ) RETURN
  257. C
  258. IWORK(4) = LOCD
  259. IWORK(9) = LOCIW
  260. IWORK(10) = LOCW
  261. C
  262. C Compute the inverse of the diagonal of AA'. This will be
  263. C used as the preconditioner.
  264. CALL DSD2S(N, NELT, IA, JA, A, ISYM, RWORK(1))
  265. C
  266. C Perform Conjugate Gradient algorithm on the normal equations.
  267. CALL DCGN( N, B, X, NELT, IA, JA, A, ISYM, DSMV, DSMTV, DSDI,
  268. $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK(LOCR),
  269. $ RWORK(LOCZ), RWORK(LOCP), RWORK(LOCATP), RWORK(LOCATZ),
  270. $ RWORK(LOCDZ), RWORK(LOCATD), RWORK, IWORK )
  271. C
  272. IF( ITER.GT.ITMAX ) IERR = 2
  273. RETURN
  274. C------------- LAST LINE OF DSDCGN FOLLOWS ----------------------------
  275. END