123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- *DECK DSDOMN
- SUBROUTINE DSDOMN (N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL,
- + TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
- C***BEGIN PROLOGUE DSDOMN
- C***PURPOSE Diagonally Scaled Orthomin Sparse Iterative Ax=b Solver.
- C Routine to solve a general linear system Ax = b using
- C the Orthomin method with diagonal scaling.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A4, D2B4
- C***TYPE DOUBLE PRECISION (SSDOMN-S, DSDOMN-D)
- C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM SOLVE,
- C SLAP, SPARSE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
- C INTEGER ITER, IERR, IUNIT, LENW, IWORK(10), LENIW
- C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR
- C DOUBLE PRECISION RWORK(7*N+3*N*NSAVE+NSAVE)
- C
- C CALL DSDOMN(N, B, X, NELT, IA, JA, A, ISYM, NSAVE, ITOL, TOL,
- C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW )
- C
- C *Arguments:
- C N :IN Integer.
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right-hand side vector.
- C X :INOUT Double Precision X(N).
- C On input X is your initial guess for solution vector.
- C On output X is the final approximate solution.
- C NELT :IN Integer.
- C Number of Non-Zeros stored in A.
- C IA :IN Integer IA(NELT).
- C JA :IN Integer JA(NELT).
- C A :IN Double Precision A(NELT).
- C These arrays should hold the matrix A in either the SLAP
- C Triad format or the SLAP Column format. See "Description",
- C below. If the SLAP Triad format is chosen, it is changed
- C internally to the SLAP Column format.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the upper
- C or lower triangle of the matrix is stored.
- C NSAVE :IN Integer.
- C Number of direction vectors to save and orthogonalize against.
- C ITOL :IN Integer.
- C Flag to indicate type of convergence criterion.
- C If ITOL=1, iteration stops when the 2-norm of the residual
- C divided by the 2-norm of the right-hand side is less than TOL.
- C If ITOL=2, iteration stops when the 2-norm of M-inv times the
- C residual divided by the 2-norm of M-inv times the right hand
- C side is less than TOL, where M-inv is the inverse of the
- C diagonal of A.
- C ITOL=11 is often useful for checking and comparing different
- C routines. For this case, the user must supply the "exact"
- C solution or a very accurate approximation (one with an error
- C much less than TOL) through a common block,
- C COMMON /DSLBLK/ SOLN( )
- C If ITOL=11, iteration stops when the 2-norm of the difference
- C between the iterative approximation and the user-supplied
- C solution divided by the 2-norm of the user-supplied solution
- C is less than TOL.
- C TOL :INOUT Double Precision.
- C Convergence criterion, as described above. (Reset if IERR=4.)
- C ITMAX :IN Integer.
- C Maximum number of iterations.
- C ITER :OUT Integer.
- C Number of iterations required to reach convergence, or
- C ITMAX+1 if convergence criterion could not be achieved in
- C ITMAX iterations.
- C ERR :OUT Double Precision.
- C Error estimate of error in final approximate solution, as
- C defined by ITOL.
- C IERR :OUT Integer.
- C Return error flag.
- C IERR = 0 => All went well.
- C IERR = 1 => Insufficient space allocated for WORK or IWORK.
- C IERR = 2 => Method failed to converge in ITMAX steps.
- C IERR = 3 => Error in user input.
- C Check input values of N, ITOL.
- C IERR = 4 => User error tolerance set too tight.
- C Reset to 500*D1MACH(3). Iteration proceeded.
- C IERR = 5 => Preconditioning matrix, M, is not positive
- C definite. (r,z) < 0.
- C IERR = 6 => Breakdown of method detected.
- C (p,Ap) < epsilon**2.
- C IUNIT :IN Integer.
- C Unit number on which to write the error at each iteration,
- C if this is desired for monitoring convergence. If unit
- C number is 0, no writing will occur.
- C RWORK :WORK Double Precision RWORK(LENW).
- C Double Precision array used for workspace.
- C LENW :IN Integer.
- C Length of the double precision workspace, RWORK.
- C LENW >= 7*N+NSAVE*(3*N+1).
- C IWORK :WORK Integer IWORK(LENIW).
- C Used to hold pointers into the RWORK array.
- C LENIW :IN Integer.
- C Length of the integer workspace, IWORK. LENIW >= 10.
- C
- C *Description:
- C This routine is simply a driver for the DOMN routine. It
- C calls the DSDS routine to set up the preconditioning and
- C then calls DOMN with the appropriate MATVEC and MSOLVE
- C routines.
- C
- C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
- C data structures: 1) the SLAP Triad format or 2) the SLAP
- C Column format. The user can hand this routine either of the
- C of these data structures and SLAP will figure out which on
- C is being used and act accordingly.
- C
- C =================== S L A P Triad format ===================
- C
- C In this format only the non-zeros are stored. They may
- C appear in *ANY* order. The user supplies three arrays of
- C length NELT, where NELT is the number of non-zeros in the
- C matrix: (IA(NELT), JA(NELT), A(NELT)). For each non-zero
- C the user puts the row and column index of that matrix
- C element in the IA and JA arrays. The value of the non-zero
- C matrix element is placed in the corresponding location of
- C the A array. This is an extremely easy data structure to
- C generate. On the other hand it is not too efficient on
- C vector computers for the iterative solution of linear
- C systems. Hence, SLAP changes this input data structure to
- C the SLAP Column format for the iteration (but does not
- C change it back).
- C
- C Here is an example of the SLAP Triad storage format for a
- C 5x5 Matrix. Recall that the entries may appear in any order.
- C
- C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
- C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
- C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C =================== S L A P Column format ==================
- C
- C In this format the non-zeros are stored counting down
- C columns (except for the diagonal entry, which must appear
- C first in each "column") and are stored in the double pre-
- C cision array A. In other words, for each column in the
- C matrix first put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)),A(JA(ICOL)) are the first elements of the ICOL-
- C th column in IA and A, and IA(JA(ICOL+1)-1), A(JA(ICOL+1)-1)
- C are the last elements of the ICOL-th column. Note that we
- C always have JA(N+1)=NELT+1, where N is the number of columns
- C in the matrix and NELT is the number of non-zeros in the
- C matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C *Side Effects:
- C The SLAP Triad format (IA, JA, A) is modified internally to
- C be the SLAP Column format. See above.
- C
- C *Cautions:
- C This routine will attempt to write to the Fortran logical output
- C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
- C this logical unit is attached to a file or terminal before calling
- C this routine with a non-zero value for IUNIT. This routine does
- C not check for the validity of a non-zero IUNIT unit number.
- C
- C***SEE ALSO DOMN, DSLUOM
- C***REFERENCES (NONE)
- C***ROUTINES CALLED DCHKW, DOMN, DS2Y, DSDI, DSDS, DSMV
- C***REVISION HISTORY (YYMMDD)
- C 890404 DATE WRITTEN
- C 890404 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890921 Removed TeX from comments. (FNF)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
- C 920511 Added complete declaration section. (WRB)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C***END PROLOGUE DSDOMN
- C .. Parameters ..
- INTEGER LOCRB, LOCIB
- PARAMETER (LOCRB=1, LOCIB=11)
- C .. Scalar Arguments ..
- DOUBLE PRECISION ERR, TOL
- INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N,
- + NELT, NSAVE
- C .. Array Arguments ..
- DOUBLE PRECISION A(N), B(N), RWORK(LENW), X(N)
- INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
- C .. Local Scalars ..
- INTEGER LOCAP, LOCCSA, LOCDIN, LOCDZ, LOCEMA, LOCIW, LOCP, LOCR,
- + LOCW, LOCZ
- C .. External Subroutines ..
- EXTERNAL DCHKW, DOMN, DS2Y, DSDI, DSDS, DSMV
- C***FIRST EXECUTABLE STATEMENT DSDOMN
- C
- IERR = 0
- IF( N.LT.1 .OR. NELT.LT.1 ) THEN
- IERR = 3
- RETURN
- ENDIF
- C
- C Change the SLAP input matrix IA, JA, A to SLAP-Column format.
- CALL DS2Y( N, NELT, IA, JA, A, ISYM )
- C
- C Set up the workspace.
- LOCIW = LOCIB
- C
- LOCDIN = LOCRB
- LOCR = LOCDIN + N
- LOCZ = LOCR + N
- LOCP = LOCZ + N
- LOCAP = LOCP + N*(NSAVE+1)
- LOCEMA = LOCAP + N*(NSAVE+1)
- LOCDZ = LOCEMA + N*(NSAVE+1)
- LOCCSA = LOCDZ + N
- LOCW = LOCCSA + NSAVE
- C
- C Check the workspace allocations.
- CALL DCHKW( 'DSDOMN', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
- IF( IERR.NE.0 ) RETURN
- C
- IWORK(4) = LOCDIN
- IWORK(9) = LOCIW
- IWORK(10) = LOCW
- C
- C Compute the inverse of the diagonal of the matrix.
- CALL DSDS(N, NELT, IA, JA, A, ISYM, RWORK(LOCDIN))
- C
- C Perform the Diagonally Scaled Orthomin iteration algorithm.
- CALL DOMN(N, B, X, NELT, IA, JA, A, ISYM, DSMV,
- $ DSDI, NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
- $ RWORK(LOCR), RWORK(LOCZ), RWORK(LOCP), RWORK(LOCAP),
- $ RWORK(LOCEMA), RWORK(LOCDZ), RWORK(LOCCSA),
- $ RWORK, IWORK )
- RETURN
- C------------- LAST LINE OF DSDOMN FOLLOWS ----------------------------
- END
|