123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229 |
- *DECK DSIDI
- SUBROUTINE DSIDI (A, LDA, N, KPVT, DET, INERT, WORK, JOB)
- C***BEGIN PROLOGUE DSIDI
- C***PURPOSE Compute the determinant, inertia and inverse of a real
- C symmetric matrix using the factors from DSIFA.
- C***LIBRARY SLATEC (LINPACK)
- C***CATEGORY D2B1A, D3B1A
- C***TYPE DOUBLE PRECISION (SSIDI-S, DSIDI-D, CHIDI-C, CSIDI-C)
- C***KEYWORDS DETERMINANT, INVERSE, LINEAR ALGEBRA, LINPACK, MATRIX,
- C SYMMETRIC
- C***AUTHOR Bunch, J., (UCSD)
- C***DESCRIPTION
- C
- C DSIDI computes the determinant, inertia and inverse
- C of a double precision symmetric matrix using the factors from
- C DSIFA.
- C
- C On Entry
- C
- C A DOUBLE PRECISION(LDA,N)
- C the output from DSIFA.
- C
- C LDA INTEGER
- C the leading dimension of the array A.
- C
- C N INTEGER
- C the order of the matrix A.
- C
- C KPVT INTEGER(N)
- C the pivot vector from DSIFA.
- C
- C WORK DOUBLE PRECISION(N)
- C work vector. Contents destroyed.
- C
- C JOB INTEGER
- C JOB has the decimal expansion ABC where
- C if C .NE. 0, the inverse is computed,
- C if B .NE. 0, the determinant is computed,
- C if A .NE. 0, the inertia is computed.
- C
- C For example, JOB = 111 gives all three.
- C
- C On Return
- C
- C Variables not requested by JOB are not used.
- C
- C A contains the upper triangle of the inverse of
- C the original matrix. The strict lower triangle
- C is never referenced.
- C
- C DET DOUBLE PRECISION(2)
- C determinant of original matrix.
- C DETERMINANT = DET(1) * 10.0**DET(2)
- C with 1.0 .LE. ABS(DET(1)) .LT. 10.0
- C or DET(1) = 0.0.
- C
- C INERT INTEGER(3)
- C the inertia of the original matrix.
- C INERT(1) = number of positive eigenvalues.
- C INERT(2) = number of negative eigenvalues.
- C INERT(3) = number of zero eigenvalues.
- C
- C Error Condition
- C
- C A division by zero may occur if the inverse is requested
- C and DSICO has set RCOND .EQ. 0.0
- C or DSIFA has set INFO .NE. 0 .
- C
- C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
- C Stewart, LINPACK Users' Guide, SIAM, 1979.
- C***ROUTINES CALLED DAXPY, DCOPY, DDOT, DSWAP
- C***REVISION HISTORY (YYMMDD)
- C 780814 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891107 Modified routine equivalence list. (WRB)
- C 891107 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900326 Removed duplicate information from DESCRIPTION section.
- C (WRB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE DSIDI
- INTEGER LDA,N,JOB
- DOUBLE PRECISION A(LDA,*),WORK(*)
- DOUBLE PRECISION DET(2)
- INTEGER KPVT(*),INERT(3)
- C
- DOUBLE PRECISION AKKP1,DDOT,TEMP
- DOUBLE PRECISION TEN,D,T,AK,AKP1
- INTEGER J,JB,K,KM1,KS,KSTEP
- LOGICAL NOINV,NODET,NOERT
- C***FIRST EXECUTABLE STATEMENT DSIDI
- NOINV = MOD(JOB,10) .EQ. 0
- NODET = MOD(JOB,100)/10 .EQ. 0
- NOERT = MOD(JOB,1000)/100 .EQ. 0
- C
- IF (NODET .AND. NOERT) GO TO 140
- IF (NOERT) GO TO 10
- INERT(1) = 0
- INERT(2) = 0
- INERT(3) = 0
- 10 CONTINUE
- IF (NODET) GO TO 20
- DET(1) = 1.0D0
- DET(2) = 0.0D0
- TEN = 10.0D0
- 20 CONTINUE
- T = 0.0D0
- DO 130 K = 1, N
- D = A(K,K)
- C
- C CHECK IF 1 BY 1
- C
- IF (KPVT(K) .GT. 0) GO TO 50
- C
- C 2 BY 2 BLOCK
- C USE DET (D S) = (D/T * C - T) * T , T = ABS(S)
- C (S C)
- C TO AVOID UNDERFLOW/OVERFLOW TROUBLES.
- C TAKE TWO PASSES THROUGH SCALING. USE T FOR FLAG.
- C
- IF (T .NE. 0.0D0) GO TO 30
- T = ABS(A(K,K+1))
- D = (D/T)*A(K+1,K+1) - T
- GO TO 40
- 30 CONTINUE
- D = T
- T = 0.0D0
- 40 CONTINUE
- 50 CONTINUE
- C
- IF (NOERT) GO TO 60
- IF (D .GT. 0.0D0) INERT(1) = INERT(1) + 1
- IF (D .LT. 0.0D0) INERT(2) = INERT(2) + 1
- IF (D .EQ. 0.0D0) INERT(3) = INERT(3) + 1
- 60 CONTINUE
- C
- IF (NODET) GO TO 120
- DET(1) = D*DET(1)
- IF (DET(1) .EQ. 0.0D0) GO TO 110
- 70 IF (ABS(DET(1)) .GE. 1.0D0) GO TO 80
- DET(1) = TEN*DET(1)
- DET(2) = DET(2) - 1.0D0
- GO TO 70
- 80 CONTINUE
- 90 IF (ABS(DET(1)) .LT. TEN) GO TO 100
- DET(1) = DET(1)/TEN
- DET(2) = DET(2) + 1.0D0
- GO TO 90
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- 130 CONTINUE
- 140 CONTINUE
- C
- C COMPUTE INVERSE(A)
- C
- IF (NOINV) GO TO 270
- K = 1
- 150 IF (K .GT. N) GO TO 260
- KM1 = K - 1
- IF (KPVT(K) .LT. 0) GO TO 180
- C
- C 1 BY 1
- C
- A(K,K) = 1.0D0/A(K,K)
- IF (KM1 .LT. 1) GO TO 170
- CALL DCOPY(KM1,A(1,K),1,WORK,1)
- DO 160 J = 1, KM1
- A(J,K) = DDOT(J,A(1,J),1,WORK,1)
- CALL DAXPY(J-1,WORK(J),A(1,J),1,A(1,K),1)
- 160 CONTINUE
- A(K,K) = A(K,K) + DDOT(KM1,WORK,1,A(1,K),1)
- 170 CONTINUE
- KSTEP = 1
- GO TO 220
- 180 CONTINUE
- C
- C 2 BY 2
- C
- T = ABS(A(K,K+1))
- AK = A(K,K)/T
- AKP1 = A(K+1,K+1)/T
- AKKP1 = A(K,K+1)/T
- D = T*(AK*AKP1 - 1.0D0)
- A(K,K) = AKP1/D
- A(K+1,K+1) = AK/D
- A(K,K+1) = -AKKP1/D
- IF (KM1 .LT. 1) GO TO 210
- CALL DCOPY(KM1,A(1,K+1),1,WORK,1)
- DO 190 J = 1, KM1
- A(J,K+1) = DDOT(J,A(1,J),1,WORK,1)
- CALL DAXPY(J-1,WORK(J),A(1,J),1,A(1,K+1),1)
- 190 CONTINUE
- A(K+1,K+1) = A(K+1,K+1) + DDOT(KM1,WORK,1,A(1,K+1),1)
- A(K,K+1) = A(K,K+1) + DDOT(KM1,A(1,K),1,A(1,K+1),1)
- CALL DCOPY(KM1,A(1,K),1,WORK,1)
- DO 200 J = 1, KM1
- A(J,K) = DDOT(J,A(1,J),1,WORK,1)
- CALL DAXPY(J-1,WORK(J),A(1,J),1,A(1,K),1)
- 200 CONTINUE
- A(K,K) = A(K,K) + DDOT(KM1,WORK,1,A(1,K),1)
- 210 CONTINUE
- KSTEP = 2
- 220 CONTINUE
- C
- C SWAP
- C
- KS = ABS(KPVT(K))
- IF (KS .EQ. K) GO TO 250
- CALL DSWAP(KS,A(1,KS),1,A(1,K),1)
- DO 230 JB = KS, K
- J = K + KS - JB
- TEMP = A(J,K)
- A(J,K) = A(KS,J)
- A(KS,J) = TEMP
- 230 CONTINUE
- IF (KSTEP .EQ. 1) GO TO 240
- TEMP = A(KS,K+1)
- A(KS,K+1) = A(K,K+1)
- A(K,K+1) = TEMP
- 240 CONTINUE
- 250 CONTINUE
- K = K + KSTEP
- GO TO 150
- 260 CONTINUE
- 270 CONTINUE
- RETURN
- END
|