123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- *DECK DSLI2
- SUBROUTINE DSLI2 (N, B, X, NEL, IEL, JEL, EL)
- C***BEGIN PROLOGUE DSLI2
- C***PURPOSE SLAP Lower Triangle Matrix Backsolve.
- C Routine to solve a system of the form Lx = b , where L
- C is a lower triangular matrix.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A3
- C***TYPE DOUBLE PRECISION (SSLI2-S, DSLI2-D)
- C***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM SOLVE, SLAP, SPARSE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NEL, IEL(NEL), JEL(NEL)
- C DOUBLE PRECISION B(N), X(N), EL(NEL)
- C
- C CALL DSLI2( N, B, X, NEL, IEL, JEL, EL )
- C
- C *Arguments:
- C N :IN Integer
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right hand side vector.
- C X :OUT Double Precision X(N).
- C Solution to Lx = b.
- C NEL :IN Integer.
- C Number of non-zeros in the EL array.
- C IEL :IN Integer IEL(NEL).
- C JEL :IN Integer JEL(NEL).
- C EL :IN Double Precision EL(NEL).
- C IEL, JEL, EL contain the unit lower triangular factor of
- C the incomplete decomposition of the A matrix stored in
- C SLAP Row format. The diagonal of ones *IS* stored. This
- C structure can be set up by the DS2LT routine. See the
- C "Description", below, for more details about the SLAP Row
- C format.
- C
- C *Description:
- C This routine is supplied with the SLAP package as a routine
- C to perform the MSOLVE operation in the DIR iteration routine
- C for the driver routine DSGS. It must be called via the SLAP
- C MSOLVE calling sequence convention interface routine DSLI.
- C **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
- C **** SLAP MSOLVE CALLING CONVENTION ****
- C
- C ==================== S L A P Row format ====================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Row format. In this format the non-zeros are stored
- C counting across rows (except for the diagonal entry, which
- C must appear first in each "row") and are stored in the
- C double precision array A. In other words, for each row in
- C the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going across the row (except the
- C diagonal) in order. The JA array holds the column index for
- C each non-zero. The IA array holds the offsets into the JA,
- C A arrays for the beginning of each row. That is,
- C JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
- C th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
- C are the last elements of the IROW-th row. Note that we
- C always have IA(N+1) = NELT+1, where N is the number of rows
- C in the matrix and NELT is the number of non-zeros in the
- C matrix.
- C
- C Here is an example of the SLAP Row storage format for a 5x5
- C Matrix (in the A and JA arrays '|' denotes the end of a row):
- C
- C 5x5 Matrix SLAP Row format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
- C |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| IA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C With the SLAP Row format the "inner loop" of this routine
- C should vectorize on machines with hardware support for
- C vector gather/scatter operations. Your compiler may require
- C a compiler directive to convince it that there are no
- C implicit vector dependencies. Compiler directives for the
- C Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
- C with the standard SLAP distribution.
- C
- C***SEE ALSO DSLI
- C***REFERENCES (NONE)
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 871119 DATE WRITTEN
- C 881213 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 920511 Added complete declaration section. (WRB)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C 930701 Updated CATEGORY section. (FNF, WRB)
- C***END PROLOGUE DSLI2
- C .. Scalar Arguments ..
- INTEGER N, NEL
- C .. Array Arguments ..
- DOUBLE PRECISION B(N), EL(NEL), X(N)
- INTEGER IEL(NEL), JEL(NEL)
- C .. Local Scalars ..
- INTEGER I, ICOL, J, JBGN, JEND
- C***FIRST EXECUTABLE STATEMENT DSLI2
- C
- C Initialize the solution by copying the right hands side
- C into it.
- C
- DO 10 I=1,N
- X(I) = B(I)
- 10 CONTINUE
- C
- CVD$ NOCONCUR
- DO 30 ICOL = 1, N
- X(ICOL) = X(ICOL)/EL(JEL(ICOL))
- JBGN = JEL(ICOL) + 1
- JEND = JEL(ICOL+1) - 1
- IF( JBGN.LE.JEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ NOCONCUR
- CVD$ NODEPCHK
- DO 20 J = JBGN, JEND
- X(IEL(J)) = X(IEL(J)) - EL(J)*X(ICOL)
- 20 CONTINUE
- ENDIF
- 30 CONTINUE
- C
- RETURN
- C------------- LAST LINE OF DSLI2 FOLLOWS ----------------------------
- END
|