dslubc.f 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323
  1. *DECK DSLUBC
  2. SUBROUTINE DSLUBC (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  3. + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
  4. C***BEGIN PROLOGUE DSLUBC
  5. C***PURPOSE Incomplete LU BiConjugate Gradient Sparse Ax=b Solver.
  6. C Routine to solve a linear system Ax = b using the
  7. C BiConjugate Gradient method with Incomplete LU
  8. C decomposition preconditioning.
  9. C***LIBRARY SLATEC (SLAP)
  10. C***CATEGORY D2A4, D2B4
  11. C***TYPE DOUBLE PRECISION (SSLUBC-S, DSLUBC-D)
  12. C***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
  13. C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
  14. C***AUTHOR Greenbaum, Anne, (Courant Institute)
  15. C Seager, Mark K., (LLNL)
  16. C Lawrence Livermore National Laboratory
  17. C PO BOX 808, L-60
  18. C Livermore, CA 94550 (510) 423-3141
  19. C seager@llnl.gov
  20. C***DESCRIPTION
  21. C
  22. C *Usage:
  23. C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
  24. C INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
  25. C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)
  26. C
  27. C CALL DSLUBC(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
  28. C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
  29. C
  30. C *Arguments:
  31. C N :IN Integer.
  32. C Order of the Matrix.
  33. C B :IN Double Precision B(N).
  34. C Right-hand side vector.
  35. C X :INOUT Double Precision X(N).
  36. C On input X is your initial guess for solution vector.
  37. C On output X is the final approximate solution.
  38. C NELT :IN Integer.
  39. C Number of Non-Zeros stored in A.
  40. C IA :INOUT Integer IA(NELT).
  41. C JA :INOUT Integer JA(NELT).
  42. C A :INOUT Double Precision A(NELT).
  43. C These arrays should hold the matrix A in either the SLAP
  44. C Triad format or the SLAP Column format. See "Description",
  45. C below. If the SLAP Triad format is chosen it is changed
  46. C internally to the SLAP Column format.
  47. C ISYM :IN Integer.
  48. C Flag to indicate symmetric storage format.
  49. C If ISYM=0, all non-zero entries of the matrix are stored.
  50. C If ISYM=1, the matrix is symmetric, and only the upper
  51. C or lower triangle of the matrix is stored.
  52. C ITOL :IN Integer.
  53. C Flag to indicate type of convergence criterion.
  54. C If ITOL=1, iteration stops when the 2-norm of the residual
  55. C divided by the 2-norm of the right-hand side is less than TOL.
  56. C If ITOL=2, iteration stops when the 2-norm of M-inv times the
  57. C residual divided by the 2-norm of M-inv times the right hand
  58. C side is less than TOL, where M-inv is the inverse of the
  59. C diagonal of A.
  60. C ITOL=11 is often useful for checking and comparing different
  61. C routines. For this case, the user must supply the "exact"
  62. C solution or a very accurate approximation (one with an error
  63. C much less than TOL) through a common block,
  64. C COMMON /DSLBLK/ SOLN( )
  65. C If ITOL=11, iteration stops when the 2-norm of the difference
  66. C between the iterative approximation and the user-supplied
  67. C solution divided by the 2-norm of the user-supplied solution
  68. C is less than TOL. Note that this requires the user to set up
  69. C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
  70. C The routine with this declaration should be loaded before the
  71. C stop test so that the correct length is used by the loader.
  72. C This procedure is not standard Fortran and may not work
  73. C correctly on your system (although it has worked on every
  74. C system the authors have tried). If ITOL is not 11 then this
  75. C common block is indeed standard Fortran.
  76. C TOL :INOUT Double Precision.
  77. C Convergence criterion, as described above. (Reset if IERR=4.)
  78. C ITMAX :IN Integer.
  79. C Maximum number of iterations.
  80. C ITER :OUT Integer.
  81. C Number of iterations required to reach convergence, or
  82. C ITMAX+1 if convergence criterion could not be achieved in
  83. C ITMAX iterations.
  84. C ERR :OUT Double Precision.
  85. C Error estimate of error in final approximate solution, as
  86. C defined by ITOL.
  87. C IERR :OUT Integer.
  88. C Return error flag.
  89. C IERR = 0 => All went well.
  90. C IERR = 1 => Insufficient space allocated for WORK or IWORK.
  91. C IERR = 2 => Method failed to converge in ITMAX steps.
  92. C IERR = 3 => Error in user input.
  93. C Check input values of N, ITOL.
  94. C IERR = 4 => User error tolerance set too tight.
  95. C Reset to 500*D1MACH(3). Iteration proceeded.
  96. C IERR = 5 => Preconditioning matrix, M, is not positive
  97. C definite. (r,z) < 0.
  98. C IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
  99. C IERR = 7 => Incomplete factorization broke down and was
  100. C fudged. Resulting preconditioning may be less
  101. C than the best.
  102. C IUNIT :IN Integer.
  103. C Unit number on which to write the error at each iteration,
  104. C if this is desired for monitoring convergence. If unit
  105. C number is 0, no writing will occur.
  106. C RWORK :WORK Double Precision RWORK(LENW).
  107. C Double Precision array used for workspace.
  108. C LENW :IN Integer.
  109. C Length of the double precision workspace, RWORK.
  110. C LENW >= NL+NU+8*N.
  111. C NL is the number of non-zeros in the lower triangle of the
  112. C matrix (including the diagonal).
  113. C NU is the number of non-zeros in the upper triangle of the
  114. C matrix (including the diagonal).
  115. C IWORK :WORK Integer IWORK(LENIW).
  116. C Integer array used for workspace.
  117. C Upon return the following locations of IWORK hold information
  118. C which may be of use to the user:
  119. C IWORK(9) Amount of Integer workspace actually used.
  120. C IWORK(10) Amount of Double Precision workspace actually used.
  121. C LENIW :IN Integer.
  122. C Length of the integer workspace, IWORK.
  123. C LENIW >= NL+NU+4*N+12.
  124. C NL is the number of non-zeros in the lower triangle of the
  125. C matrix (including the diagonal).
  126. C NU is the number of non-zeros in the upper triangle of the
  127. C matrix (including the diagonal).
  128. C
  129. C *Description:
  130. C This routine is simply a driver for the DBCGN routine. It
  131. C calls the DSILUS routine to set up the preconditioning and
  132. C then calls DBCGN with the appropriate MATVEC, MTTVEC and
  133. C MSOLVE, MTSOLV routines.
  134. C
  135. C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
  136. C data structures: 1) the SLAP Triad format or 2) the SLAP
  137. C Column format. The user can hand this routine either of the
  138. C of these data structures and SLAP will figure out which on
  139. C is being used and act accordingly.
  140. C
  141. C =================== S L A P Triad format ===================
  142. C
  143. C This routine requires that the matrix A be stored in the
  144. C SLAP Triad format. In this format only the non-zeros are
  145. C stored. They may appear in *ANY* order. The user supplies
  146. C three arrays of length NELT, where NELT is the number of
  147. C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
  148. C each non-zero the user puts the row and column index of that
  149. C matrix element in the IA and JA arrays. The value of the
  150. C non-zero matrix element is placed in the corresponding
  151. C location of the A array. This is an extremely easy data
  152. C structure to generate. On the other hand it is not too
  153. C efficient on vector computers for the iterative solution of
  154. C linear systems. Hence, SLAP changes this input data
  155. C structure to the SLAP Column format for the iteration (but
  156. C does not change it back).
  157. C
  158. C Here is an example of the SLAP Triad storage format for a
  159. C 5x5 Matrix. Recall that the entries may appear in any order.
  160. C
  161. C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
  162. C 1 2 3 4 5 6 7 8 9 10 11
  163. C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
  164. C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
  165. C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
  166. C | 0 0 0 44 0|
  167. C |51 0 53 0 55|
  168. C
  169. C =================== S L A P Column format ==================
  170. C
  171. C This routine requires that the matrix A be stored in the
  172. C SLAP Column format. In this format the non-zeros are stored
  173. C counting down columns (except for the diagonal entry, which
  174. C must appear first in each "column") and are stored in the
  175. C double precision array A. In other words, for each column
  176. C in the matrix put the diagonal entry in A. Then put in the
  177. C other non-zero elements going down the column (except the
  178. C diagonal) in order. The IA array holds the row index for
  179. C each non-zero. The JA array holds the offsets into the IA,
  180. C A arrays for the beginning of each column. That is,
  181. C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
  182. C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
  183. C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
  184. C Note that we always have JA(N+1) = NELT+1, where N is the
  185. C number of columns in the matrix and NELT is the number of
  186. C non-zeros in the matrix.
  187. C
  188. C Here is an example of the SLAP Column storage format for a
  189. C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
  190. C column):
  191. C
  192. C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
  193. C 1 2 3 4 5 6 7 8 9 10 11
  194. C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
  195. C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
  196. C | 0 0 33 0 35| JA: 1 4 6 8 9 12
  197. C | 0 0 0 44 0|
  198. C |51 0 53 0 55|
  199. C
  200. C *Side Effects:
  201. C The SLAP Triad format (IA, JA, A) is modified internally to
  202. C be the SLAP Column format. See above.
  203. C
  204. C *Cautions:
  205. C This routine will attempt to write to the Fortran logical output
  206. C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
  207. C this logical unit is attached to a file or terminal before calling
  208. C this routine with a non-zero value for IUNIT. This routine does
  209. C not check for the validity of a non-zero IUNIT unit number.
  210. C
  211. C***SEE ALSO DBCG, DSDBCG
  212. C***REFERENCES (NONE)
  213. C***ROUTINES CALLED DBCG, DCHKW, DS2Y, DSILUS, DSLUI, DSLUTI, DSMTV,
  214. C DSMV
  215. C***REVISION HISTORY (YYMMDD)
  216. C 890404 DATE WRITTEN
  217. C 890404 Previous REVISION DATE
  218. C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
  219. C 890921 Removed TeX from comments. (FNF)
  220. C 890922 Numerous changes to prologue to make closer to SLATEC
  221. C standard. (FNF)
  222. C 890929 Numerous changes to reduce SP/DP differences. (FNF)
  223. C 910411 Prologue converted to Version 4.0 format. (BAB)
  224. C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
  225. C 920511 Added complete declaration section. (WRB)
  226. C 921113 Corrected C***CATEGORY line. (FNF)
  227. C***END PROLOGUE DSLUBC
  228. C .. Parameters ..
  229. INTEGER LOCRB, LOCIB
  230. PARAMETER (LOCRB=1, LOCIB=11)
  231. C .. Scalar Arguments ..
  232. DOUBLE PRECISION ERR, TOL
  233. INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT
  234. C .. Array Arguments ..
  235. DOUBLE PRECISION A(NELT), B(N), RWORK(LENW), X(N)
  236. INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
  237. C .. Local Scalars ..
  238. INTEGER ICOL, J, JBGN, JEND, LOCDIN, LOCDZ, LOCIL, LOCIU, LOCIW,
  239. + LOCJL, LOCJU, LOCL, LOCNC, LOCNR, LOCP, LOCPP, LOCR,
  240. + LOCRR, LOCU, LOCW, LOCZ, LOCZZ, NL, NU
  241. C .. External Subroutines ..
  242. EXTERNAL DBCG, DCHKW, DS2Y, DSILUS, DSLUI, DSLUTI, DSMTV, DSMV
  243. C***FIRST EXECUTABLE STATEMENT DSLUBC
  244. C
  245. IERR = 0
  246. IF( N.LT.1 .OR. NELT.LT.1 ) THEN
  247. IERR = 3
  248. RETURN
  249. ENDIF
  250. C
  251. C Change the SLAP input matrix IA, JA, A to SLAP-Column format.
  252. CALL DS2Y( N, NELT, IA, JA, A, ISYM )
  253. C
  254. C Count number of Non-Zero elements preconditioner ILU matrix.
  255. C Then set up the work arrays.
  256. NL = 0
  257. NU = 0
  258. DO 20 ICOL = 1, N
  259. C Don't count diagonal.
  260. JBGN = JA(ICOL)+1
  261. JEND = JA(ICOL+1)-1
  262. IF( JBGN.LE.JEND ) THEN
  263. CVD$ NOVECTOR
  264. DO 10 J = JBGN, JEND
  265. IF( IA(J).GT.ICOL ) THEN
  266. NL = NL + 1
  267. IF( ISYM.NE.0 ) NU = NU + 1
  268. ELSE
  269. NU = NU + 1
  270. ENDIF
  271. 10 CONTINUE
  272. ENDIF
  273. 20 CONTINUE
  274. C
  275. LOCIL = LOCIB
  276. LOCJL = LOCIL + N+1
  277. LOCIU = LOCJL + NL
  278. LOCJU = LOCIU + NU
  279. LOCNR = LOCJU + N+1
  280. LOCNC = LOCNR + N
  281. LOCIW = LOCNC + N
  282. C
  283. LOCL = LOCRB
  284. LOCDIN = LOCL + NL
  285. LOCU = LOCDIN + N
  286. LOCR = LOCU + NU
  287. LOCZ = LOCR + N
  288. LOCP = LOCZ + N
  289. LOCRR = LOCP + N
  290. LOCZZ = LOCRR + N
  291. LOCPP = LOCZZ + N
  292. LOCDZ = LOCPP + N
  293. LOCW = LOCDZ + N
  294. C
  295. C Check the workspace allocations.
  296. CALL DCHKW( 'DSLUBC', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
  297. IF( IERR.NE.0 ) RETURN
  298. C
  299. IWORK(1) = LOCIL
  300. IWORK(2) = LOCJL
  301. IWORK(3) = LOCIU
  302. IWORK(4) = LOCJU
  303. IWORK(5) = LOCL
  304. IWORK(6) = LOCDIN
  305. IWORK(7) = LOCU
  306. IWORK(9) = LOCIW
  307. IWORK(10) = LOCW
  308. C
  309. C Compute the Incomplete LU decomposition.
  310. CALL DSILUS( N, NELT, IA, JA, A, ISYM, NL, IWORK(LOCIL),
  311. $ IWORK(LOCJL), RWORK(LOCL), RWORK(LOCDIN), NU, IWORK(LOCIU),
  312. $ IWORK(LOCJU), RWORK(LOCU), IWORK(LOCNR), IWORK(LOCNC) )
  313. C
  314. C Perform the incomplete LU preconditioned
  315. C BiConjugate Gradient algorithm.
  316. CALL DBCG(N, B, X, NELT, IA, JA, A, ISYM, DSMV, DSMTV,
  317. $ DSLUI, DSLUTI, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT,
  318. $ RWORK(LOCR), RWORK(LOCZ), RWORK(LOCP),
  319. $ RWORK(LOCRR), RWORK(LOCZZ), RWORK(LOCPP),
  320. $ RWORK(LOCDZ), RWORK, IWORK )
  321. RETURN
  322. C------------- LAST LINE OF DSLUBC FOLLOWS ----------------------------
  323. END