123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- *DECK DSLUCN
- SUBROUTINE DSLUCN (N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
- + ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW)
- C***BEGIN PROLOGUE DSLUCN
- C***PURPOSE Incomplete LU CG Sparse Ax=b Solver for Normal Equations.
- C Routine to solve a general linear system Ax = b using the
- C incomplete LU decomposition with the Conjugate Gradient
- C method applied to the normal equations, viz., AA'y = b,
- C x = A'y.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A4, D2B4
- C***TYPE DOUBLE PRECISION (SSLUCN-S, DSLUCN-D)
- C***KEYWORDS ITERATIVE INCOMPLETE LU PRECONDITION,
- C NON-SYMMETRIC LINEAR SYSTEM, SLAP, SPARSE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, ITOL, ITMAX
- C INTEGER ITER, IERR, IUNIT, LENW, IWORK(NL+NU+4*N+2), LENIW
- C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, RWORK(NL+NU+8*N)
- C
- C CALL DSLUCN(N, B, X, NELT, IA, JA, A, ISYM, ITOL, TOL,
- C $ ITMAX, ITER, ERR, IERR, IUNIT, RWORK, LENW, IWORK, LENIW )
- C
- C *Arguments:
- C N :IN Integer
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right-hand side vector.
- C X :INOUT Double Precision X(N).
- C On input X is your initial guess for solution vector.
- C On output X is the final approximate solution.
- C NELT :IN Integer.
- C Number of Non-Zeros stored in A.
- C IA :INOUT Integer IA(NELT).
- C JA :INOUT Integer JA(NELT).
- C A :INOUT Double Precision A(NELT).
- C These arrays should hold the matrix A in either the SLAP
- C Triad format or the SLAP Column format. See "Description",
- C below. If the SLAP Triad format is chosen it is changed
- C internally to the SLAP Column format.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the upper
- C or lower triangle of the matrix is stored.
- C ITOL :IN Integer.
- C Flag to indicate type of convergence criterion.
- C If ITOL=1, iteration stops when the 2-norm of the residual
- C divided by the 2-norm of the right-hand side is less than TOL.
- C If ITOL=2, iteration stops when the 2-norm of M-inv times the
- C residual divided by the 2-norm of M-inv times the right hand
- C side is less than TOL, where M-inv is the inverse of the
- C diagonal of A.
- C ITOL=11 is often useful for checking and comparing different
- C routines. For this case, the user must supply the "exact"
- C solution or a very accurate approximation (one with an error
- C much less than TOL) through a common block,
- C COMMON /DSLBLK/ SOLN( )
- C If ITOL=11, iteration stops when the 2-norm of the difference
- C between the iterative approximation and the user-supplied
- C solution divided by the 2-norm of the user-supplied solution
- C is less than TOL. Note that this requires the user to set up
- C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
- C The routine with this declaration should be loaded before the
- C stop test so that the correct length is used by the loader.
- C This procedure is not standard Fortran and may not work
- C correctly on your system (although it has worked on every
- C system the authors have tried). If ITOL is not 11 then this
- C common block is indeed standard Fortran.
- C TOL :INOUT Double Precision.
- C Convergence criterion, as described above. (Reset if IERR=4.)
- C ITMAX :IN Integer.
- C Maximum number of iterations.
- C ITER :OUT Integer.
- C Number of iterations required to reach convergence, or
- C ITMAX+1 if convergence criterion could not be achieved in
- C ITMAX iterations.
- C ERR :OUT Double Precision.
- C Error estimate of error in final approximate solution, as
- C defined by ITOL.
- C IERR :OUT Integer.
- C Return error flag.
- C IERR = 0 => All went well.
- C IERR = 1 => Insufficient space allocated for WORK or IWORK.
- C IERR = 2 => Method failed to converge in ITMAX steps.
- C IERR = 3 => Error in user input.
- C Check input values of N, ITOL.
- C IERR = 4 => User error tolerance set too tight.
- C Reset to 500*D1MACH(3). Iteration proceeded.
- C IERR = 5 => Preconditioning matrix, M, is not positive
- C definite. (r,z) < 0.
- C IERR = 6 => Matrix A is not positive definite. (p,Ap) < 0.
- C IERR = 7 => Incomplete factorization broke down and was
- C fudged. Resulting preconditioning may be less
- C than the best.
- C IUNIT :IN Integer.
- C Unit number on which to write the error at each iteration,
- C if this is desired for monitoring convergence. If unit
- C number is 0, no writing will occur.
- C RWORK :WORK Double Precision RWORK(LENW).
- C Double Precision array used for workspace.
- C LENW :IN Integer.
- C Length of the double precision workspace, RWORK.
- C LENW >= NL+NU+8*N.
- C NL is the number of non-zeros in the lower triangle of the
- C matrix (including the diagonal).
- C NU is the number of non-zeros in the upper triangle of the
- C matrix (including the diagonal).
- C IWORK :WORK Integer IWORK(LENIW).
- C Integer array used for workspace.
- C Upon return the following locations of IWORK hold information
- C which may be of use to the user:
- C IWORK(9) Amount of Integer workspace actually used.
- C IWORK(10) Amount of Double Precision workspace actually used.
- C LENIW :IN Integer.
- C Length of the integer workspace, IWORK.
- C LENIW >= NL+NU+4*N+12.
- C NL is the number of non-zeros in the lower triangle of the
- C matrix (including the diagonal).
- C NU is the number of non-zeros in the upper triangle of the
- C matrix (including the diagonal).
- C
- C *Description:
- C This routine is simply a driver for the DCGN routine. It
- C calls the DSILUS routine to set up the preconditioning and then
- C calls DCGN with the appropriate MATVEC and MSOLVE routines.
- C
- C The Sparse Linear Algebra Package (SLAP) utilizes two matrix
- C data structures: 1) the SLAP Triad format or 2) the SLAP
- C Column format. The user can hand this routine either of the
- C of these data structures and SLAP will figure out which on
- C is being used and act accordingly.
- C
- C =================== S L A P Triad format ===================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Triad format. In this format only the non-zeros are
- C stored. They may appear in *ANY* order. The user supplies
- C three arrays of length NELT, where NELT is the number of
- C non-zeros in the matrix: (IA(NELT), JA(NELT), A(NELT)). For
- C each non-zero the user puts the row and column index of that
- C matrix element in the IA and JA arrays. The value of the
- C non-zero matrix element is placed in the corresponding
- C location of the A array. This is an extremely easy data
- C structure to generate. On the other hand it is not too
- C efficient on vector computers for the iterative solution of
- C linear systems. Hence, SLAP changes this input data
- C structure to the SLAP Column format for the iteration (but
- C does not change it back).
- C
- C Here is an example of the SLAP Triad storage format for a
- C 5x5 Matrix. Recall that the entries may appear in any order.
- C
- C 5x5 Matrix SLAP Triad format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 51 12 11 33 15 53 55 22 35 44 21
- C |21 22 0 0 0| IA: 5 1 1 3 1 5 5 2 3 4 2
- C | 0 0 33 0 35| JA: 1 2 1 3 5 3 5 2 5 4 1
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C =================== S L A P Column format ==================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Column format. In this format the non-zeros are stored
- C counting down columns (except for the diagonal entry, which
- C must appear first in each "column") and are stored in the
- C double precision array A. In other words, for each column
- C in the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
- C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
- C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
- C Note that we always have JA(N+1) = NELT+1, where N is the
- C number of columns in the matrix and NELT is the number of
- C non-zeros in the matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C *Side Effects:
- C The SLAP Triad format (IA, JA, A) is modified internally to be
- C the SLAP Column format. See above.
- C
- C *Cautions:
- C This routine will attempt to write to the Fortran logical output
- C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
- C this logical unit is attached to a file or terminal before calling
- C this routine with a non-zero value for IUNIT. This routine does
- C not check for the validity of a non-zero IUNIT unit number.
- C
- C***SEE ALSO DCGN, SDCGN, DSILUS
- C***REFERENCES (NONE)
- C***ROUTINES CALLED DCGN, DCHKW, DS2Y, DSILUS, DSMMTI, DSMTV, DSMV
- C***REVISION HISTORY (YYMMDD)
- C 890404 DATE WRITTEN
- C 890404 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890921 Removed TeX from comments. (FNF)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
- C 920511 Added complete declaration section. (WRB)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C***END PROLOGUE DSLUCN
- C .. Parameters ..
- INTEGER LOCRB, LOCIB
- PARAMETER (LOCRB=1, LOCIB=11)
- C .. Scalar Arguments ..
- DOUBLE PRECISION ERR, TOL
- INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, LENIW, LENW, N, NELT
- C .. Array Arguments ..
- DOUBLE PRECISION A(NELT), B(N), RWORK(LENW), X(N)
- INTEGER IA(NELT), IWORK(LENIW), JA(NELT)
- C .. Local Scalars ..
- INTEGER ICOL, J, JBGN, JEND, LOCATD, LOCATP, LOCATZ, LOCDIN,
- + LOCDZ, LOCIL, LOCIU, LOCIW, LOCJL, LOCJU, LOCL, LOCNC,
- + LOCNR, LOCP, LOCR, LOCU, LOCW, LOCZ, NL, NU
- C .. External Subroutines ..
- EXTERNAL DCGN, DCHKW, DS2Y, DSILUS, DSMMTI, DSMTV, DSMV
- C***FIRST EXECUTABLE STATEMENT DSLUCN
- C
- IERR = 0
- IF( N.LT.1 .OR. NELT.LT.1 ) THEN
- IERR = 3
- RETURN
- ENDIF
- C
- C Change the SLAP input matrix IA, JA, A to SLAP-Column format.
- CALL DS2Y( N, NELT, IA, JA, A, ISYM )
- C
- C Count number of Non-Zero elements preconditioner ILU matrix.
- C Then set up the work arrays.
- NL = 0
- NU = 0
- DO 20 ICOL = 1, N
- C Don't count diagonal.
- JBGN = JA(ICOL)+1
- JEND = JA(ICOL+1)-1
- IF( JBGN.LE.JEND ) THEN
- CVD$ NOVECTOR
- DO 10 J = JBGN, JEND
- IF( IA(J).GT.ICOL ) THEN
- NL = NL + 1
- IF( ISYM.NE.0 ) NU = NU + 1
- ELSE
- NU = NU + 1
- ENDIF
- 10 CONTINUE
- ENDIF
- 20 CONTINUE
- C
- LOCIL = LOCIB
- LOCJL = LOCIL + N+1
- LOCIU = LOCJL + NL
- LOCJU = LOCIU + NU
- LOCNR = LOCJU + N+1
- LOCNC = LOCNR + N
- LOCIW = LOCNC + N
- C
- LOCL = LOCRB
- LOCDIN = LOCL + NL
- LOCU = LOCDIN + N
- LOCR = LOCU + NU
- LOCZ = LOCR + N
- LOCP = LOCZ + N
- LOCATP = LOCP + N
- LOCATZ = LOCATP + N
- LOCDZ = LOCATZ + N
- LOCATD = LOCDZ + N
- LOCW = LOCATD + N
- C
- C Check the workspace allocations.
- CALL DCHKW( 'DSLUCN', LOCIW, LENIW, LOCW, LENW, IERR, ITER, ERR )
- IF( IERR.NE.0 ) RETURN
- C
- IWORK(1) = LOCIL
- IWORK(2) = LOCJL
- IWORK(3) = LOCIU
- IWORK(4) = LOCJU
- IWORK(5) = LOCL
- IWORK(6) = LOCDIN
- IWORK(7) = LOCU
- IWORK(9) = LOCIW
- IWORK(10) = LOCW
- C
- C Compute the Incomplete LU decomposition.
- CALL DSILUS( N, NELT, IA, JA, A, ISYM, NL, IWORK(LOCIL),
- $ IWORK(LOCJL), RWORK(LOCL), RWORK(LOCDIN), NU, IWORK(LOCIU),
- $ IWORK(LOCJU), RWORK(LOCU), IWORK(LOCNR), IWORK(LOCNC) )
- C
- C Perform Conjugate Gradient algorithm on the normal equations.
- CALL DCGN(N, B, X, NELT, IA, JA, A, ISYM, DSMV, DSMTV, DSMMTI,
- $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, RWORK(LOCR),
- $ RWORK(LOCZ), RWORK(LOCP), RWORK(LOCATP), RWORK(LOCATZ),
- $ RWORK(LOCDZ), RWORK(LOCATD), RWORK, IWORK )
- C
- IF( ITER.GT.ITMAX ) IERR = 2
- RETURN
- C------------- LAST LINE OF DSLUCN FOLLOWS ----------------------------
- END
|