123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- *DECK DSMMI2
- SUBROUTINE DSMMI2 (N, B, X, IL, JL, L, DINV, IU, JU, U)
- C***BEGIN PROLOGUE DSMMI2
- C***PURPOSE SLAP Backsolve for LDU Factorization of Normal Equations.
- C To solve a system of the form (L*D*U)*(L*D*U)' X = B,
- C where L is a unit lower triangular matrix, D is a diagonal
- C matrix, and U is a unit upper triangular matrix and '
- C denotes transpose.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2E
- C***TYPE DOUBLE PRECISION (SSMMI2-S, DSMMI2-D)
- C***KEYWORDS ITERATIVE PRECONDITION, LINEAR SYSTEM, SLAP, SPARSE
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, IL(NL), JL(NL), IU(NU), JU(NU)
- C DOUBLE PRECISION B(N), X(N), L(NL), DINV(N), U(NU)
- C
- C CALL DSMMI2( N, B, X, IL, JL, L, DINV, IU, JU, U )
- C
- C *Arguments:
- C N :IN Integer
- C Order of the Matrix.
- C B :IN Double Precision B(N).
- C Right hand side.
- C X :OUT Double Precision X(N).
- C Solution of (L*D*U)(L*D*U)trans x = b.
- C IL :IN Integer IL(NL).
- C JL :IN Integer JL(NL).
- C L :IN Double Precision L(NL).
- C IL, JL, L contain the unit lower triangular factor of the
- C incomplete decomposition of some matrix stored in SLAP Row
- C format. The diagonal of ones *IS* stored. This structure
- C can be set up by the DSILUS routine. See the
- C "Description", below for more details about the SLAP
- C format. (NL is the number of non-zeros in the L array.)
- C DINV :IN Double Precision DINV(N).
- C Inverse of the diagonal matrix D.
- C IU :IN Integer IU(NU).
- C JU :IN Integer JU(NU).
- C U :IN Double Precision U(NU).
- C IU, JU, U contain the unit upper triangular factor of the
- C incomplete decomposition of some matrix stored in SLAP
- C Column format. The diagonal of ones *IS* stored. This
- C structure can be set up by the DSILUS routine. See the
- C "Description", below for more details about the SLAP
- C format. (NU is the number of non-zeros in the U array.)
- C
- C *Description:
- C This routine is supplied with the SLAP package as a routine
- C to perform the MSOLVE operation in the SBCGN iteration
- C routine for the driver DSLUCN. It must be called via the
- C SLAP MSOLVE calling sequence convention interface routine
- C DSMMTI.
- C **** THIS ROUTINE ITSELF DOES NOT CONFORM TO THE ****
- C **** SLAP MSOLVE CALLING CONVENTION ****
- C
- C IL, JL, L should contain the unit lower triangular factor of
- C the incomplete decomposition of the A matrix stored in SLAP
- C Row format. IU, JU, U should contain the unit upper factor
- C of the incomplete decomposition of the A matrix stored in
- C SLAP Column format This ILU factorization can be computed by
- C the DSILUS routine. The diagonals (which are all one's) are
- C stored.
- C
- C =================== S L A P Column format ==================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Column format. In this format the non-zeros are stored
- C counting down columns (except for the diagonal entry, which
- C must appear first in each "column") and are stored in the
- C double precision array A. In other words, for each column
- C in the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going down the column (except the
- C diagonal) in order. The IA array holds the row index for
- C each non-zero. The JA array holds the offsets into the IA,
- C A arrays for the beginning of each column. That is,
- C IA(JA(ICOL)), A(JA(ICOL)) points to the beginning of the
- C ICOL-th column in IA and A. IA(JA(ICOL+1)-1),
- C A(JA(ICOL+1)-1) points to the end of the ICOL-th column.
- C Note that we always have JA(N+1) = NELT+1, where N is the
- C number of columns in the matrix and NELT is the number of
- C non-zeros in the matrix.
- C
- C Here is an example of the SLAP Column storage format for a
- C 5x5 Matrix (in the A and IA arrays '|' denotes the end of a
- C column):
- C
- C 5x5 Matrix SLAP Column format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 21 51 | 22 12 | 33 53 | 44 | 55 15 35
- C |21 22 0 0 0| IA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| JA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C ==================== S L A P Row format ====================
- C
- C This routine requires that the matrix A be stored in the
- C SLAP Row format. In this format the non-zeros are stored
- C counting across rows (except for the diagonal entry, which
- C must appear first in each "row") and are stored in the
- C double precision array A. In other words, for each row in
- C the matrix put the diagonal entry in A. Then put in the
- C other non-zero elements going across the row (except the
- C diagonal) in order. The JA array holds the column index for
- C each non-zero. The IA array holds the offsets into the JA,
- C A arrays for the beginning of each row. That is,
- C JA(IA(IROW)),A(IA(IROW)) are the first elements of the IROW-
- C th row in JA and A, and JA(IA(IROW+1)-1), A(IA(IROW+1)-1)
- C are the last elements of the IROW-th row. Note that we
- C always have IA(N+1) = NELT+1, where N is the number of rows
- C in the matrix and NELT is the number of non-zeros in the
- C matrix.
- C
- C Here is an example of the SLAP Row storage format for a 5x5
- C Matrix (in the A and JA arrays '|' denotes the end of a row):
- C
- C 5x5 Matrix SLAP Row format for 5x5 matrix on left.
- C 1 2 3 4 5 6 7 8 9 10 11
- C |11 12 0 0 15| A: 11 12 15 | 22 21 | 33 35 | 44 | 55 51 53
- C |21 22 0 0 0| JA: 1 2 5 | 2 1 | 3 5 | 4 | 5 1 3
- C | 0 0 33 0 35| IA: 1 4 6 8 9 12
- C | 0 0 0 44 0|
- C |51 0 53 0 55|
- C
- C With the SLAP format the "inner loops" of this routine
- C should vectorize on machines with hardware support for
- C vector gather/scatter operations. Your compiler may require
- C a compiler directive to convince it that there are no
- C implicit vector dependencies. Compiler directives for the
- C Alliant FX/Fortran and CRI CFT/CFT77 compilers are supplied
- C with the standard SLAP distribution.
- C
- C***SEE ALSO DSILUS
- C***REFERENCES (NONE)
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 871119 DATE WRITTEN
- C 881213 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 920511 Added complete declaration section. (WRB)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C 930701 Updated CATEGORY section. (FNF, WRB)
- C***END PROLOGUE DSMMI2
- C .. Scalar Arguments ..
- INTEGER N
- C .. Array Arguments ..
- DOUBLE PRECISION B(N), DINV(N), L(*), U(N), X(N)
- INTEGER IL(*), IU(*), JL(*), JU(*)
- C .. Local Scalars ..
- INTEGER I, ICOL, IROW, J, JBGN, JEND
- C***FIRST EXECUTABLE STATEMENT DSMMI2
- C
- C Solve L*Y = B, storing result in X, L stored by rows.
- C
- DO 10 I = 1, N
- X(I) = B(I)
- 10 CONTINUE
- DO 30 IROW = 2, N
- JBGN = IL(IROW)
- JEND = IL(IROW+1)-1
- IF( JBGN.LE.JEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ ASSOC
- CVD$ NODEPCHK
- DO 20 J = JBGN, JEND
- X(IROW) = X(IROW) - L(J)*X(JL(J))
- 20 CONTINUE
- ENDIF
- 30 CONTINUE
- C
- C Solve D*Z = Y, storing result in X.
- DO 40 I=1,N
- X(I) = X(I)*DINV(I)
- 40 CONTINUE
- C
- C Solve U*X = Z, U stored by columns.
- DO 60 ICOL = N, 2, -1
- JBGN = JU(ICOL)
- JEND = JU(ICOL+1)-1
- IF( JBGN.LE.JEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ NODEPCHK
- DO 50 J = JBGN, JEND
- X(IU(J)) = X(IU(J)) - U(J)*X(ICOL)
- 50 CONTINUE
- ENDIF
- 60 CONTINUE
- C
- C Solve U'*Y = X, storing result in X, U stored by columns.
- DO 80 IROW = 2, N
- JBGN = JU(IROW)
- JEND = JU(IROW+1) - 1
- IF( JBGN.LE.JEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ ASSOC
- CVD$ NODEPCHK
- DO 70 J = JBGN, JEND
- X(IROW) = X(IROW) - U(J)*X(IU(J))
- 70 CONTINUE
- ENDIF
- 80 CONTINUE
- C
- C Solve D*Z = Y, storing result in X.
- DO 90 I = 1, N
- X(I) = X(I)*DINV(I)
- 90 CONTINUE
- C
- C Solve L'*X = Z, L stored by rows.
- DO 110 ICOL = N, 2, -1
- JBGN = IL(ICOL)
- JEND = IL(ICOL+1) - 1
- IF( JBGN.LE.JEND ) THEN
- CLLL. OPTION ASSERT (NOHAZARD)
- CDIR$ IVDEP
- CVD$ NODEPCHK
- DO 100 J = JBGN, JEND
- X(JL(J)) = X(JL(J)) - L(J)*X(ICOL)
- 100 CONTINUE
- ENDIF
- 110 CONTINUE
- C
- RETURN
- C------------- LAST LINE OF DSMMI2 FOLLOWS ----------------------------
- END
|