dspmv.f 8.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. *DECK DSPMV
  2. SUBROUTINE DSPMV (UPLO, N, ALPHA, AP, X, INCX, BETA, Y, INCY)
  3. C***BEGIN PROLOGUE DSPMV
  4. C***PURPOSE Perform the matrix-vector operation.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE DOUBLE PRECISION (SSPMV-S, DSPMV-D, CSPMV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C DSPMV performs the matrix-vector operation
  16. C
  17. C y := alpha*A*x + beta*y,
  18. C
  19. C where alpha and beta are scalars, x and y are n element vectors and
  20. C A is an n by n symmetric matrix, supplied in packed form.
  21. C
  22. C Parameters
  23. C ==========
  24. C
  25. C UPLO - CHARACTER*1.
  26. C On entry, UPLO specifies whether the upper or lower
  27. C triangular part of the matrix A is supplied in the packed
  28. C array AP as follows:
  29. C
  30. C UPLO = 'U' or 'u' The upper triangular part of A is
  31. C supplied in AP.
  32. C
  33. C UPLO = 'L' or 'l' The lower triangular part of A is
  34. C supplied in AP.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C N - INTEGER.
  39. C On entry, N specifies the order of the matrix A.
  40. C N must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C ALPHA - DOUBLE PRECISION.
  44. C On entry, ALPHA specifies the scalar alpha.
  45. C Unchanged on exit.
  46. C
  47. C AP - DOUBLE PRECISION array of DIMENSION at least
  48. C ( ( n*( n + 1))/2).
  49. C Before entry with UPLO = 'U' or 'u', the array AP must
  50. C contain the upper triangular part of the symmetric matrix
  51. C packed sequentially, column by column, so that AP( 1 )
  52. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
  53. C and a( 2, 2 ) respectively, and so on.
  54. C Before entry with UPLO = 'L' or 'l', the array AP must
  55. C contain the lower triangular part of the symmetric matrix
  56. C packed sequentially, column by column, so that AP( 1 )
  57. C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
  58. C and a( 3, 1 ) respectively, and so on.
  59. C Unchanged on exit.
  60. C
  61. C X - DOUBLE PRECISION array of dimension at least
  62. C ( 1 + ( n - 1 )*abs( INCX ) ).
  63. C Before entry, the incremented array X must contain the n
  64. C element vector x.
  65. C Unchanged on exit.
  66. C
  67. C INCX - INTEGER.
  68. C On entry, INCX specifies the increment for the elements of
  69. C X. INCX must not be zero.
  70. C Unchanged on exit.
  71. C
  72. C BETA - DOUBLE PRECISION.
  73. C On entry, BETA specifies the scalar beta. When BETA is
  74. C supplied as zero then Y need not be set on input.
  75. C Unchanged on exit.
  76. C
  77. C Y - DOUBLE PRECISION array of dimension at least
  78. C ( 1 + ( n - 1 )*abs( INCY ) ).
  79. C Before entry, the incremented array Y must contain the n
  80. C element vector y. On exit, Y is overwritten by the updated
  81. C vector y.
  82. C
  83. C INCY - INTEGER.
  84. C On entry, INCY specifies the increment for the elements of
  85. C Y. INCY must not be zero.
  86. C Unchanged on exit.
  87. C
  88. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  89. C Hanson, R. J. An extended set of Fortran basic linear
  90. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  91. C pp. 1-17, March 1988.
  92. C***ROUTINES CALLED LSAME, XERBLA
  93. C***REVISION HISTORY (YYMMDD)
  94. C 861022 DATE WRITTEN
  95. C 910605 Modified to meet SLATEC prologue standards. Only comment
  96. C lines were modified. (BKS)
  97. C***END PROLOGUE DSPMV
  98. C .. Scalar Arguments ..
  99. DOUBLE PRECISION ALPHA, BETA
  100. INTEGER INCX, INCY, N
  101. CHARACTER*1 UPLO
  102. C .. Array Arguments ..
  103. DOUBLE PRECISION AP( * ), X( * ), Y( * )
  104. C .. Parameters ..
  105. DOUBLE PRECISION ONE , ZERO
  106. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  107. C .. Local Scalars ..
  108. DOUBLE PRECISION TEMP1, TEMP2
  109. INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
  110. C .. External Functions ..
  111. LOGICAL LSAME
  112. EXTERNAL LSAME
  113. C .. External Subroutines ..
  114. EXTERNAL XERBLA
  115. C***FIRST EXECUTABLE STATEMENT DSPMV
  116. C
  117. C Test the input parameters.
  118. C
  119. INFO = 0
  120. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  121. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  122. INFO = 1
  123. ELSE IF( N.LT.0 )THEN
  124. INFO = 2
  125. ELSE IF( INCX.EQ.0 )THEN
  126. INFO = 6
  127. ELSE IF( INCY.EQ.0 )THEN
  128. INFO = 9
  129. END IF
  130. IF( INFO.NE.0 )THEN
  131. CALL XERBLA( 'DSPMV ', INFO )
  132. RETURN
  133. END IF
  134. C
  135. C Quick return if possible.
  136. C
  137. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  138. $ RETURN
  139. C
  140. C Set up the start points in X and Y.
  141. C
  142. IF( INCX.GT.0 )THEN
  143. KX = 1
  144. ELSE
  145. KX = 1 - ( N - 1 )*INCX
  146. END IF
  147. IF( INCY.GT.0 )THEN
  148. KY = 1
  149. ELSE
  150. KY = 1 - ( N - 1 )*INCY
  151. END IF
  152. C
  153. C Start the operations. In this version the elements of the array AP
  154. C are accessed sequentially with one pass through AP.
  155. C
  156. C First form y := beta*y.
  157. C
  158. IF( BETA.NE.ONE )THEN
  159. IF( INCY.EQ.1 )THEN
  160. IF( BETA.EQ.ZERO )THEN
  161. DO 10, I = 1, N
  162. Y( I ) = ZERO
  163. 10 CONTINUE
  164. ELSE
  165. DO 20, I = 1, N
  166. Y( I ) = BETA*Y( I )
  167. 20 CONTINUE
  168. END IF
  169. ELSE
  170. IY = KY
  171. IF( BETA.EQ.ZERO )THEN
  172. DO 30, I = 1, N
  173. Y( IY ) = ZERO
  174. IY = IY + INCY
  175. 30 CONTINUE
  176. ELSE
  177. DO 40, I = 1, N
  178. Y( IY ) = BETA*Y( IY )
  179. IY = IY + INCY
  180. 40 CONTINUE
  181. END IF
  182. END IF
  183. END IF
  184. IF( ALPHA.EQ.ZERO )
  185. $ RETURN
  186. KK = 1
  187. IF( LSAME( UPLO, 'U' ) )THEN
  188. C
  189. C Form y when AP contains the upper triangle.
  190. C
  191. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  192. DO 60, J = 1, N
  193. TEMP1 = ALPHA*X( J )
  194. TEMP2 = ZERO
  195. K = KK
  196. DO 50, I = 1, J - 1
  197. Y( I ) = Y( I ) + TEMP1*AP( K )
  198. TEMP2 = TEMP2 + AP( K )*X( I )
  199. K = K + 1
  200. 50 CONTINUE
  201. Y( J ) = Y( J ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2
  202. KK = KK + J
  203. 60 CONTINUE
  204. ELSE
  205. JX = KX
  206. JY = KY
  207. DO 80, J = 1, N
  208. TEMP1 = ALPHA*X( JX )
  209. TEMP2 = ZERO
  210. IX = KX
  211. IY = KY
  212. DO 70, K = KK, KK + J - 2
  213. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  214. TEMP2 = TEMP2 + AP( K )*X( IX )
  215. IX = IX + INCX
  216. IY = IY + INCY
  217. 70 CONTINUE
  218. Y( JY ) = Y( JY ) + TEMP1*AP( KK + J - 1 ) + ALPHA*TEMP2
  219. JX = JX + INCX
  220. JY = JY + INCY
  221. KK = KK + J
  222. 80 CONTINUE
  223. END IF
  224. ELSE
  225. C
  226. C Form y when AP contains the lower triangle.
  227. C
  228. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  229. DO 100, J = 1, N
  230. TEMP1 = ALPHA*X( J )
  231. TEMP2 = ZERO
  232. Y( J ) = Y( J ) + TEMP1*AP( KK )
  233. K = KK + 1
  234. DO 90, I = J + 1, N
  235. Y( I ) = Y( I ) + TEMP1*AP( K )
  236. TEMP2 = TEMP2 + AP( K )*X( I )
  237. K = K + 1
  238. 90 CONTINUE
  239. Y( J ) = Y( J ) + ALPHA*TEMP2
  240. KK = KK + ( N - J + 1 )
  241. 100 CONTINUE
  242. ELSE
  243. JX = KX
  244. JY = KY
  245. DO 120, J = 1, N
  246. TEMP1 = ALPHA*X( JX )
  247. TEMP2 = ZERO
  248. Y( JY ) = Y( JY ) + TEMP1*AP( KK )
  249. IX = JX
  250. IY = JY
  251. DO 110, K = KK + 1, KK + N - J
  252. IX = IX + INCX
  253. IY = IY + INCY
  254. Y( IY ) = Y( IY ) + TEMP1*AP( K )
  255. TEMP2 = TEMP2 + AP( K )*X( IX )
  256. 110 CONTINUE
  257. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  258. JX = JX + INCX
  259. JY = JY + INCY
  260. KK = KK + ( N - J + 1 )
  261. 120 CONTINUE
  262. END IF
  263. END IF
  264. C
  265. RETURN
  266. C
  267. C End of DSPMV .
  268. C
  269. END