123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- *DECK DSPR2
- SUBROUTINE DSPR2 (UPLO, N, ALPHA, X, INCX, Y, INCY, AP)
- C***BEGIN PROLOGUE DSPR2
- C***PURPOSE Perform the symmetric rank 2 operation.
- C***LIBRARY SLATEC (BLAS)
- C***CATEGORY D1B4
- C***TYPE DOUBLE PRECISION (SSPR2-S, DSPR2-D, CSPR2-C)
- C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
- C***AUTHOR Dongarra, J. J., (ANL)
- C Du Croz, J., (NAG)
- C Hammarling, S., (NAG)
- C Hanson, R. J., (SNLA)
- C***DESCRIPTION
- C
- C DSPR2 performs the symmetric rank 2 operation
- C
- C A := alpha*x*y' + alpha*y*x' + A,
- C
- C where alpha is a scalar, x and y are n element vectors and A is an
- C n by n symmetric matrix, supplied in packed form.
- C
- C Parameters
- C ==========
- C
- C UPLO - CHARACTER*1.
- C On entry, UPLO specifies whether the upper or lower
- C triangular part of the matrix A is supplied in the packed
- C array AP as follows:
- C
- C UPLO = 'U' or 'u' The upper triangular part of A is
- C supplied in AP.
- C
- C UPLO = 'L' or 'l' The lower triangular part of A is
- C supplied in AP.
- C
- C Unchanged on exit.
- C
- C N - INTEGER.
- C On entry, N specifies the order of the matrix A.
- C N must be at least zero.
- C Unchanged on exit.
- C
- C ALPHA - DOUBLE PRECISION.
- C On entry, ALPHA specifies the scalar alpha.
- C Unchanged on exit.
- C
- C X - DOUBLE PRECISION array of dimension at least
- C ( 1 + ( n - 1)*abs( INCX)).
- C Before entry, the incremented array X must contain the n
- C element vector x.
- C Unchanged on exit.
- C
- C INCX - INTEGER.
- C On entry, INCX specifies the increment for the elements of
- C X. INCX must not be zero.
- C Unchanged on exit.
- C
- C Y - DOUBLE PRECISION array of dimension at least
- C ( 1 + ( n - 1 )*abs( INCY ) ).
- C Before entry, the incremented array Y must contain the n
- C element vector y.
- C Unchanged on exit.
- C
- C INCY - INTEGER.
- C On entry, INCY specifies the increment for the elements of
- C Y. INCY must not be zero.
- C Unchanged on exit.
- C
- C AP - DOUBLE PRECISION array of DIMENSION at least
- C ( ( n*( n + 1 ) )/2 ).
- C Before entry with UPLO = 'U' or 'u', the array AP must
- C contain the upper triangular part of the symmetric matrix
- C packed sequentially, column by column, so that AP( 1 )
- C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
- C and a( 2, 2 ) respectively, and so on. On exit, the array
- C AP is overwritten by the upper triangular part of the
- C updated matrix.
- C Before entry with UPLO = 'L' or 'l', the array AP must
- C contain the lower triangular part of the symmetric matrix
- C packed sequentially, column by column, so that AP( 1 )
- C contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
- C and a( 3, 1 ) respectively, and so on. On exit, the array
- C AP is overwritten by the lower triangular part of the
- C updated matrix.
- C
- C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
- C Hanson, R. J. An extended set of Fortran basic linear
- C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
- C pp. 1-17, March 1988.
- C***ROUTINES CALLED LSAME, XERBLA
- C***REVISION HISTORY (YYMMDD)
- C 861022 DATE WRITTEN
- C 910605 Modified to meet SLATEC prologue standards. Only comment
- C lines were modified. (BKS)
- C***END PROLOGUE DSPR2
- C .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA
- INTEGER INCX, INCY, N
- CHARACTER*1 UPLO
- C .. Array Arguments ..
- DOUBLE PRECISION AP( * ), X( * ), Y( * )
- C .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER ( ZERO = 0.0D+0 )
- C .. Local Scalars ..
- DOUBLE PRECISION TEMP1, TEMP2
- INTEGER I, INFO, IX, IY, J, JX, JY, K, KK, KX, KY
- C .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- C .. External Subroutines ..
- EXTERNAL XERBLA
- C***FIRST EXECUTABLE STATEMENT DSPR2
- C
- C Test the input parameters.
- C
- INFO = 0
- IF ( .NOT.LSAME( UPLO, 'U' ).AND.
- $ .NOT.LSAME( UPLO, 'L' ) )THEN
- INFO = 1
- ELSE IF( N.LT.0 )THEN
- INFO = 2
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 5
- ELSE IF( INCY.EQ.0 )THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'DSPR2 ', INFO )
- RETURN
- END IF
- C
- C Quick return if possible.
- C
- IF( ( N.EQ.0 ).OR.( ALPHA.EQ.ZERO ) )
- $ RETURN
- C
- C Set up the start points in X and Y if the increments are not both
- C unity.
- C
- IF( ( INCX.NE.1 ).OR.( INCY.NE.1 ) )THEN
- IF( INCX.GT.0 )THEN
- KX = 1
- ELSE
- KX = 1 - ( N - 1 )*INCX
- END IF
- IF( INCY.GT.0 )THEN
- KY = 1
- ELSE
- KY = 1 - ( N - 1 )*INCY
- END IF
- JX = KX
- JY = KY
- END IF
- C
- C Start the operations. In this version the elements of the array AP
- C are accessed sequentially with one pass through AP.
- C
- KK = 1
- IF( LSAME( UPLO, 'U' ) )THEN
- C
- C Form A when upper triangle is stored in AP.
- C
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 20, J = 1, N
- IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*Y( J )
- TEMP2 = ALPHA*X( J )
- K = KK
- DO 10, I = 1, J
- AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
- K = K + 1
- 10 CONTINUE
- END IF
- KK = KK + J
- 20 CONTINUE
- ELSE
- DO 40, J = 1, N
- IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*Y( JY )
- TEMP2 = ALPHA*X( JX )
- IX = KX
- IY = KY
- DO 30, K = KK, KK + J - 1
- AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
- IX = IX + INCX
- IY = IY + INCY
- 30 CONTINUE
- END IF
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 40 CONTINUE
- END IF
- ELSE
- C
- C Form A when lower triangle is stored in AP.
- C
- IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
- DO 60, J = 1, N
- IF( ( X( J ).NE.ZERO ).OR.( Y( J ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*Y( J )
- TEMP2 = ALPHA*X( J )
- K = KK
- DO 50, I = J, N
- AP( K ) = AP( K ) + X( I )*TEMP1 + Y( I )*TEMP2
- K = K + 1
- 50 CONTINUE
- END IF
- KK = KK + N - J + 1
- 60 CONTINUE
- ELSE
- DO 80, J = 1, N
- IF( ( X( JX ).NE.ZERO ).OR.( Y( JY ).NE.ZERO ) )THEN
- TEMP1 = ALPHA*Y( JY )
- TEMP2 = ALPHA*X( JX )
- IX = JX
- IY = JY
- DO 70, K = KK, KK + N - J
- AP( K ) = AP( K ) + X( IX )*TEMP1 + Y( IY )*TEMP2
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + N - J + 1
- 80 CONTINUE
- END IF
- END IF
- C
- RETURN
- C
- C End of DSPR2 .
- C
- END
|