dspsl.f 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196
  1. *DECK DSPSL
  2. SUBROUTINE DSPSL (AP, N, KPVT, B)
  3. C***BEGIN PROLOGUE DSPSL
  4. C***PURPOSE Solve a real symmetric system using the factors obtained
  5. C from DSPFA.
  6. C***LIBRARY SLATEC (LINPACK)
  7. C***CATEGORY D2B1A
  8. C***TYPE DOUBLE PRECISION (SSPSL-S, DSPSL-D, CHPSL-C, CSPSL-C)
  9. C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, PACKED, SOLVE, SYMMETRIC
  10. C***AUTHOR Bunch, J., (UCSD)
  11. C***DESCRIPTION
  12. C
  13. C DSISL solves the double precision symmetric system
  14. C A * X = B
  15. C using the factors computed by DSPFA.
  16. C
  17. C On Entry
  18. C
  19. C AP DOUBLE PRECISION(N*(N+1)/2)
  20. C the output from DSPFA.
  21. C
  22. C N INTEGER
  23. C the order of the matrix A .
  24. C
  25. C KPVT INTEGER(N)
  26. C the pivot vector from DSPFA.
  27. C
  28. C B DOUBLE PRECISION(N)
  29. C the right hand side vector.
  30. C
  31. C On Return
  32. C
  33. C B the solution vector X .
  34. C
  35. C Error Condition
  36. C
  37. C A division by zero may occur if DSPCO has set RCOND .EQ. 0.0
  38. C or DSPFA has set INFO .NE. 0 .
  39. C
  40. C To compute INVERSE(A) * C where C is a matrix
  41. C with P columns
  42. C CALL DSPFA(AP,N,KPVT,INFO)
  43. C IF (INFO .NE. 0) GO TO ...
  44. C DO 10 J = 1, P
  45. C CALL DSPSL(AP,N,KPVT,C(1,J))
  46. C 10 CONTINUE
  47. C
  48. C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
  49. C Stewart, LINPACK Users' Guide, SIAM, 1979.
  50. C***ROUTINES CALLED DAXPY, DDOT
  51. C***REVISION HISTORY (YYMMDD)
  52. C 780814 DATE WRITTEN
  53. C 890531 Changed all specific intrinsics to generic. (WRB)
  54. C 890831 Modified array declarations. (WRB)
  55. C 891107 Modified routine equivalence list. (WRB)
  56. C 891107 REVISION DATE from Version 3.2
  57. C 891214 Prologue converted to Version 4.0 format. (BAB)
  58. C 900326 Removed duplicate information from DESCRIPTION section.
  59. C (WRB)
  60. C 920501 Reformatted the REFERENCES section. (WRB)
  61. C***END PROLOGUE DSPSL
  62. INTEGER N,KPVT(*)
  63. DOUBLE PRECISION AP(*),B(*)
  64. C
  65. DOUBLE PRECISION AK,AKM1,BK,BKM1,DDOT,DENOM,TEMP
  66. INTEGER IK,IKM1,IKP1,K,KK,KM1K,KM1KM1,KP
  67. C
  68. C LOOP BACKWARD APPLYING THE TRANSFORMATIONS AND
  69. C D INVERSE TO B.
  70. C
  71. C***FIRST EXECUTABLE STATEMENT DSPSL
  72. K = N
  73. IK = (N*(N - 1))/2
  74. 10 IF (K .EQ. 0) GO TO 80
  75. KK = IK + K
  76. IF (KPVT(K) .LT. 0) GO TO 40
  77. C
  78. C 1 X 1 PIVOT BLOCK.
  79. C
  80. IF (K .EQ. 1) GO TO 30
  81. KP = KPVT(K)
  82. IF (KP .EQ. K) GO TO 20
  83. C
  84. C INTERCHANGE.
  85. C
  86. TEMP = B(K)
  87. B(K) = B(KP)
  88. B(KP) = TEMP
  89. 20 CONTINUE
  90. C
  91. C APPLY THE TRANSFORMATION.
  92. C
  93. CALL DAXPY(K-1,B(K),AP(IK+1),1,B(1),1)
  94. 30 CONTINUE
  95. C
  96. C APPLY D INVERSE.
  97. C
  98. B(K) = B(K)/AP(KK)
  99. K = K - 1
  100. IK = IK - K
  101. GO TO 70
  102. 40 CONTINUE
  103. C
  104. C 2 X 2 PIVOT BLOCK.
  105. C
  106. IKM1 = IK - (K - 1)
  107. IF (K .EQ. 2) GO TO 60
  108. KP = ABS(KPVT(K))
  109. IF (KP .EQ. K - 1) GO TO 50
  110. C
  111. C INTERCHANGE.
  112. C
  113. TEMP = B(K-1)
  114. B(K-1) = B(KP)
  115. B(KP) = TEMP
  116. 50 CONTINUE
  117. C
  118. C APPLY THE TRANSFORMATION.
  119. C
  120. CALL DAXPY(K-2,B(K),AP(IK+1),1,B(1),1)
  121. CALL DAXPY(K-2,B(K-1),AP(IKM1+1),1,B(1),1)
  122. 60 CONTINUE
  123. C
  124. C APPLY D INVERSE.
  125. C
  126. KM1K = IK + K - 1
  127. KK = IK + K
  128. AK = AP(KK)/AP(KM1K)
  129. KM1KM1 = IKM1 + K - 1
  130. AKM1 = AP(KM1KM1)/AP(KM1K)
  131. BK = B(K)/AP(KM1K)
  132. BKM1 = B(K-1)/AP(KM1K)
  133. DENOM = AK*AKM1 - 1.0D0
  134. B(K) = (AKM1*BK - BKM1)/DENOM
  135. B(K-1) = (AK*BKM1 - BK)/DENOM
  136. K = K - 2
  137. IK = IK - (K + 1) - K
  138. 70 CONTINUE
  139. GO TO 10
  140. 80 CONTINUE
  141. C
  142. C LOOP FORWARD APPLYING THE TRANSFORMATIONS.
  143. C
  144. K = 1
  145. IK = 0
  146. 90 IF (K .GT. N) GO TO 160
  147. IF (KPVT(K) .LT. 0) GO TO 120
  148. C
  149. C 1 X 1 PIVOT BLOCK.
  150. C
  151. IF (K .EQ. 1) GO TO 110
  152. C
  153. C APPLY THE TRANSFORMATION.
  154. C
  155. B(K) = B(K) + DDOT(K-1,AP(IK+1),1,B(1),1)
  156. KP = KPVT(K)
  157. IF (KP .EQ. K) GO TO 100
  158. C
  159. C INTERCHANGE.
  160. C
  161. TEMP = B(K)
  162. B(K) = B(KP)
  163. B(KP) = TEMP
  164. 100 CONTINUE
  165. 110 CONTINUE
  166. IK = IK + K
  167. K = K + 1
  168. GO TO 150
  169. 120 CONTINUE
  170. C
  171. C 2 X 2 PIVOT BLOCK.
  172. C
  173. IF (K .EQ. 1) GO TO 140
  174. C
  175. C APPLY THE TRANSFORMATION.
  176. C
  177. B(K) = B(K) + DDOT(K-1,AP(IK+1),1,B(1),1)
  178. IKP1 = IK + K
  179. B(K+1) = B(K+1) + DDOT(K-1,AP(IKP1+1),1,B(1),1)
  180. KP = ABS(KPVT(K))
  181. IF (KP .EQ. K) GO TO 130
  182. C
  183. C INTERCHANGE.
  184. C
  185. TEMP = B(K)
  186. B(K) = B(KP)
  187. B(KP) = TEMP
  188. 130 CONTINUE
  189. 140 CONTINUE
  190. IK = IK + K + K + 1
  191. K = K + 2
  192. 150 CONTINUE
  193. GO TO 90
  194. 160 CONTINUE
  195. RETURN
  196. END