dsymv.f 8.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. *DECK DSYMV
  2. SUBROUTINE DSYMV (UPLO, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
  3. C***BEGIN PROLOGUE DSYMV
  4. C***PURPOSE Perform the matrix-vector operation.
  5. C***LIBRARY SLATEC (BLAS)
  6. C***CATEGORY D1B4
  7. C***TYPE DOUBLE PRECISION (SSYMV-S, DSYMV-D, CSYMV-C)
  8. C***KEYWORDS LEVEL 2 BLAS, LINEAR ALGEBRA
  9. C***AUTHOR Dongarra, J. J., (ANL)
  10. C Du Croz, J., (NAG)
  11. C Hammarling, S., (NAG)
  12. C Hanson, R. J., (SNLA)
  13. C***DESCRIPTION
  14. C
  15. C DSYMV performs the matrix-vector operation
  16. C
  17. C y := alpha*A*x + beta*y,
  18. C
  19. C where alpha and beta are scalars, x and y are n element vectors and
  20. C A is an n by n symmetric matrix.
  21. C
  22. C Parameters
  23. C ==========
  24. C
  25. C UPLO - CHARACTER*1.
  26. C On entry, UPLO specifies whether the upper or lower
  27. C triangular part of the array A is to be referenced as
  28. C follows:
  29. C
  30. C UPLO = 'U' or 'u' Only the upper triangular part of A
  31. C is to be referenced.
  32. C
  33. C UPLO = 'L' or 'l' Only the lower triangular part of A
  34. C is to be referenced.
  35. C
  36. C Unchanged on exit.
  37. C
  38. C N - INTEGER.
  39. C On entry, N specifies the order of the matrix A.
  40. C N must be at least zero.
  41. C Unchanged on exit.
  42. C
  43. C ALPHA - DOUBLE PRECISION.
  44. C On entry, ALPHA specifies the scalar alpha.
  45. C Unchanged on exit.
  46. C
  47. C A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
  48. C Before entry with UPLO = 'U' or 'u', the leading n by n
  49. C upper triangular part of the array A must contain the upper
  50. C triangular part of the symmetric matrix and the strictly
  51. C lower triangular part of A is not referenced.
  52. C Before entry with UPLO = 'L' or 'l', the leading n by n
  53. C lower triangular part of the array A must contain the lower
  54. C triangular part of the symmetric matrix and the strictly
  55. C upper triangular part of A is not referenced.
  56. C Unchanged on exit.
  57. C
  58. C LDA - INTEGER.
  59. C On entry, LDA specifies the first dimension of A as declared
  60. C in the calling (sub) program. LDA must be at least
  61. C max( 1, n ).
  62. C Unchanged on exit.
  63. C
  64. C X - DOUBLE PRECISION array of dimension at least
  65. C ( 1 + ( n - 1 )*abs( INCX ) ).
  66. C Before entry, the incremented array X must contain the n
  67. C element vector x.
  68. C Unchanged on exit.
  69. C
  70. C INCX - INTEGER.
  71. C On entry, INCX specifies the increment for the elements of
  72. C X. INCX must not be zero.
  73. C Unchanged on exit.
  74. C
  75. C BETA - DOUBLE PRECISION.
  76. C On entry, BETA specifies the scalar beta. When BETA is
  77. C supplied as zero then Y need not be set on input.
  78. C Unchanged on exit.
  79. C
  80. C Y - DOUBLE PRECISION array of dimension at least
  81. C ( 1 + ( n - 1 )*abs( INCY ) ).
  82. C Before entry, the incremented array Y must contain the n
  83. C element vector y. On exit, Y is overwritten by the updated
  84. C vector y.
  85. C
  86. C INCY - INTEGER.
  87. C On entry, INCY specifies the increment for the elements of
  88. C Y. INCY must not be zero.
  89. C Unchanged on exit.
  90. C
  91. C***REFERENCES Dongarra, J. J., Du Croz, J., Hammarling, S., and
  92. C Hanson, R. J. An extended set of Fortran basic linear
  93. C algebra subprograms. ACM TOMS, Vol. 14, No. 1,
  94. C pp. 1-17, March 1988.
  95. C***ROUTINES CALLED LSAME, XERBLA
  96. C***REVISION HISTORY (YYMMDD)
  97. C 861022 DATE WRITTEN
  98. C 910605 Modified to meet SLATEC prologue standards. Only comment
  99. C lines were modified. (BKS)
  100. C***END PROLOGUE DSYMV
  101. C .. Scalar Arguments ..
  102. DOUBLE PRECISION ALPHA, BETA
  103. INTEGER INCX, INCY, LDA, N
  104. CHARACTER*1 UPLO
  105. C .. Array Arguments ..
  106. DOUBLE PRECISION A( LDA, * ), X( * ), Y( * )
  107. C .. Parameters ..
  108. DOUBLE PRECISION ONE , ZERO
  109. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  110. C .. Local Scalars ..
  111. DOUBLE PRECISION TEMP1, TEMP2
  112. INTEGER I, INFO, IX, IY, J, JX, JY, KX, KY
  113. C .. External Functions ..
  114. LOGICAL LSAME
  115. EXTERNAL LSAME
  116. C .. External Subroutines ..
  117. EXTERNAL XERBLA
  118. C .. Intrinsic Functions ..
  119. INTRINSIC MAX
  120. C***FIRST EXECUTABLE STATEMENT DSYMV
  121. C
  122. C Test the input parameters.
  123. C
  124. INFO = 0
  125. IF ( .NOT.LSAME( UPLO, 'U' ).AND.
  126. $ .NOT.LSAME( UPLO, 'L' ) )THEN
  127. INFO = 1
  128. ELSE IF( N.LT.0 )THEN
  129. INFO = 2
  130. ELSE IF( LDA.LT.MAX( 1, N ) )THEN
  131. INFO = 5
  132. ELSE IF( INCX.EQ.0 )THEN
  133. INFO = 7
  134. ELSE IF( INCY.EQ.0 )THEN
  135. INFO = 10
  136. END IF
  137. IF( INFO.NE.0 )THEN
  138. CALL XERBLA( 'DSYMV ', INFO )
  139. RETURN
  140. END IF
  141. C
  142. C Quick return if possible.
  143. C
  144. IF( ( N.EQ.0 ).OR.( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  145. $ RETURN
  146. C
  147. C Set up the start points in X and Y.
  148. C
  149. IF( INCX.GT.0 )THEN
  150. KX = 1
  151. ELSE
  152. KX = 1 - ( N - 1 )*INCX
  153. END IF
  154. IF( INCY.GT.0 )THEN
  155. KY = 1
  156. ELSE
  157. KY = 1 - ( N - 1 )*INCY
  158. END IF
  159. C
  160. C Start the operations. In this version the elements of A are
  161. C accessed sequentially with one pass through the triangular part
  162. C of A.
  163. C
  164. C First form y := beta*y.
  165. C
  166. IF( BETA.NE.ONE )THEN
  167. IF( INCY.EQ.1 )THEN
  168. IF( BETA.EQ.ZERO )THEN
  169. DO 10, I = 1, N
  170. Y( I ) = ZERO
  171. 10 CONTINUE
  172. ELSE
  173. DO 20, I = 1, N
  174. Y( I ) = BETA*Y( I )
  175. 20 CONTINUE
  176. END IF
  177. ELSE
  178. IY = KY
  179. IF( BETA.EQ.ZERO )THEN
  180. DO 30, I = 1, N
  181. Y( IY ) = ZERO
  182. IY = IY + INCY
  183. 30 CONTINUE
  184. ELSE
  185. DO 40, I = 1, N
  186. Y( IY ) = BETA*Y( IY )
  187. IY = IY + INCY
  188. 40 CONTINUE
  189. END IF
  190. END IF
  191. END IF
  192. IF( ALPHA.EQ.ZERO )
  193. $ RETURN
  194. IF( LSAME( UPLO, 'U' ) )THEN
  195. C
  196. C Form y when A is stored in upper triangle.
  197. C
  198. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  199. DO 60, J = 1, N
  200. TEMP1 = ALPHA*X( J )
  201. TEMP2 = ZERO
  202. DO 50, I = 1, J - 1
  203. Y( I ) = Y( I ) + TEMP1*A( I, J )
  204. TEMP2 = TEMP2 + A( I, J )*X( I )
  205. 50 CONTINUE
  206. Y( J ) = Y( J ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  207. 60 CONTINUE
  208. ELSE
  209. JX = KX
  210. JY = KY
  211. DO 80, J = 1, N
  212. TEMP1 = ALPHA*X( JX )
  213. TEMP2 = ZERO
  214. IX = KX
  215. IY = KY
  216. DO 70, I = 1, J - 1
  217. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  218. TEMP2 = TEMP2 + A( I, J )*X( IX )
  219. IX = IX + INCX
  220. IY = IY + INCY
  221. 70 CONTINUE
  222. Y( JY ) = Y( JY ) + TEMP1*A( J, J ) + ALPHA*TEMP2
  223. JX = JX + INCX
  224. JY = JY + INCY
  225. 80 CONTINUE
  226. END IF
  227. ELSE
  228. C
  229. C Form y when A is stored in lower triangle.
  230. C
  231. IF( ( INCX.EQ.1 ).AND.( INCY.EQ.1 ) )THEN
  232. DO 100, J = 1, N
  233. TEMP1 = ALPHA*X( J )
  234. TEMP2 = ZERO
  235. Y( J ) = Y( J ) + TEMP1*A( J, J )
  236. DO 90, I = J + 1, N
  237. Y( I ) = Y( I ) + TEMP1*A( I, J )
  238. TEMP2 = TEMP2 + A( I, J )*X( I )
  239. 90 CONTINUE
  240. Y( J ) = Y( J ) + ALPHA*TEMP2
  241. 100 CONTINUE
  242. ELSE
  243. JX = KX
  244. JY = KY
  245. DO 120, J = 1, N
  246. TEMP1 = ALPHA*X( JX )
  247. TEMP2 = ZERO
  248. Y( JY ) = Y( JY ) + TEMP1*A( J, J )
  249. IX = JX
  250. IY = JY
  251. DO 110, I = J + 1, N
  252. IX = IX + INCX
  253. IY = IY + INCY
  254. Y( IY ) = Y( IY ) + TEMP1*A( I, J )
  255. TEMP2 = TEMP2 + A( I, J )*X( IX )
  256. 110 CONTINUE
  257. Y( JY ) = Y( JY ) + ALPHA*TEMP2
  258. JX = JX + INCX
  259. JY = JY + INCY
  260. 120 CONTINUE
  261. END IF
  262. END IF
  263. C
  264. RETURN
  265. C
  266. C End of DSYMV .
  267. C
  268. END