1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- *DECK DX
- SUBROUTINE DX (U, IDMN, I, J, UXXX, UXXXX)
- C***BEGIN PROLOGUE DX
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to SEPELI
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (DX-S)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C This program computes second order finite difference
- C approximations to the third and fourth X
- C partial derivatives of U at the (I,J) mesh point.
- C
- C***SEE ALSO SEPELI
- C***ROUTINES CALLED (NONE)
- C***COMMON BLOCKS SPLPCM
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900402 Added TYPE section. (WRB)
- C***END PROLOGUE DX
- C
- COMMON /SPLPCM/ KSWX ,KSWY ,K ,L ,
- 1 AIT ,BIT ,CIT ,DIT ,
- 2 MIT ,NIT ,IS ,MS ,
- 3 JS ,NS ,DLX ,DLY ,
- 4 TDLX3 ,TDLY3 ,DLX4 ,DLY4
- DIMENSION U(IDMN,*)
- C***FIRST EXECUTABLE STATEMENT DX
- IF (I.GT.2 .AND. I.LT.(K-1)) GO TO 50
- IF (I .EQ. 1) GO TO 10
- IF (I .EQ. 2) GO TO 30
- IF (I .EQ. K-1) GO TO 60
- IF (I .EQ. K) GO TO 80
- C
- C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=A
- C
- 10 IF (KSWX .EQ. 1) GO TO 20
- UXXX = (-5.0*U(1,J)+18.0*U(2,J)-24.0*U(3,J)+14.0*U(4,J)-
- 1 3.0*U(5,J))/(TDLX3)
- UXXXX = (3.0*U(1,J)-14.0*U(2,J)+26.0*U(3,J)-24.0*U(4,J)+
- 1 11.0*U(5,J)-2.0*U(6,J))/DLX4
- RETURN
- C
- C PERIODIC AT X=A
- C
- 20 UXXX = (-U(K-2,J)+2.0*U(K-1,J)-2.0*U(2,J)+U(3,J))/(TDLX3)
- UXXXX = (U(K-2,J)-4.0*U(K-1,J)+6.0*U(1,J)-4.0*U(2,J)+U(3,J))/DLX4
- RETURN
- C
- C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=A+DLX
- C
- 30 IF (KSWX .EQ. 1) GO TO 40
- UXXX = (-3.0*U(1,J)+10.0*U(2,J)-12.0*U(3,J)+6.0*U(4,J)-U(5,J))/
- 1 TDLX3
- UXXXX = (2.0*U(1,J)-9.0*U(2,J)+16.0*U(3,J)-14.0*U(4,J)+6.0*U(5,J)-
- 1 U(6,J))/DLX4
- RETURN
- C
- C PERIODIC AT X=A+DLX
- C
- 40 UXXX = (-U(K-1,J)+2.0*U(1,J)-2.0*U(3,J)+U(4,J))/(TDLX3)
- UXXXX = (U(K-1,J)-4.0*U(1,J)+6.0*U(2,J)-4.0*U(3,J)+U(4,J))/DLX4
- RETURN
- C
- C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS ON THE INTERIOR
- C
- 50 CONTINUE
- UXXX = (-U(I-2,J)+2.0*U(I-1,J)-2.0*U(I+1,J)+U(I+2,J))/TDLX3
- UXXXX = (U(I-2,J)-4.0*U(I-1,J)+6.0*U(I,J)-4.0*U(I+1,J)+U(I+2,J))/
- 1 DLX4
- RETURN
- C
- C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=B-DLX
- C
- 60 IF (KSWX .EQ. 1) GO TO 70
- UXXX = (U(K-4,J)-6.0*U(K-3,J)+12.0*U(K-2,J)-10.0*U(K-1,J)+
- 1 3.0*U(K,J))/TDLX3
- UXXXX = (-U(K-5,J)+6.0*U(K-4,J)-14.0*U(K-3,J)+16.0*U(K-2,J)-
- 1 9.0*U(K-1,J)+2.0*U(K,J))/DLX4
- RETURN
- C
- C PERIODIC AT X=B-DLX
- C
- 70 UXXX = (-U(K-3,J)+2.0*U(K-2,J)-2.0*U(1,J)+U(2,J))/TDLX3
- UXXXX = (U(K-3,J)-4.0*U(K-2,J)+6.0*U(K-1,J)-4.0*U(1,J)+U(2,J))/
- 1 DLX4
- RETURN
- C
- C COMPUTE PARTIAL DERIVATIVE APPROXIMATIONS AT X=B
- C
- 80 UXXX = -(3.0*U(K-4,J)-14.0*U(K-3,J)+24.0*U(K-2,J)-18.0*U(K-1,J)+
- 1 5.0*U(K,J))/TDLX3
- UXXXX = (-2.0*U(K-5,J)+11.0*U(K-4,J)-24.0*U(K-3,J)+26.0*U(K-2,J)-
- 1 14.0*U(K-1,J)+3.0*U(K,J))/DLX4
- RETURN
- END
|