123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- *DECK ELMBAK
- SUBROUTINE ELMBAK (NM, LOW, IGH, A, INT, M, Z)
- C***BEGIN PROLOGUE ELMBAK
- C***PURPOSE Form the eigenvectors of a real general matrix from the
- C eigenvectors of the upper Hessenberg matrix output from
- C ELMHES.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C4
- C***TYPE SINGLE PRECISION (ELMBAK-S, COMBAK-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure ELMBAK,
- C NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
- C
- C This subroutine forms the eigenvectors of a REAL GENERAL
- C matrix by back transforming those of the corresponding
- C upper Hessenberg matrix determined by ELMHES.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, A and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine BALANC. If BALANC has not been
- C used, set LOW=1 and IGH equal to the order of the matrix.
- C
- C A contains the multipliers which were used in the reduction
- C by ELMHES in its lower triangle below the subdiagonal.
- C A is a two-dimensional REAL array, dimensioned A(NM,IGH).
- C
- C INT contains information on the rows and columns interchanged
- C in the reduction by ELMHES. Only elements LOW through IGH
- C are used. INT is a one-dimensional INTEGER array,
- C dimensioned INT(IGH).
- C
- C M is the number of columns of Z to be back transformed.
- C M is an INTEGER variable.
- C
- C Z contains the real and imaginary parts of the eigenvectors
- C to be back transformed in its first M columns. Z is a
- C two-dimensional REAL array, dimensioned Z(NM,M).
- C
- C On OUTPUT
- C
- C Z contains the real and imaginary parts of the transformed
- C eigenvectors in its first M columns.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE ELMBAK
- C
- INTEGER I,J,M,LA,MM,MP,NM,IGH,KP1,LOW,MP1
- REAL A(NM,*),Z(NM,*)
- REAL X
- INTEGER INT(*)
- C
- C***FIRST EXECUTABLE STATEMENT ELMBAK
- IF (M .EQ. 0) GO TO 200
- LA = IGH - 1
- KP1 = LOW + 1
- IF (LA .LT. KP1) GO TO 200
- C .......... FOR MP=IGH-1 STEP -1 UNTIL LOW+1 DO -- ..........
- DO 140 MM = KP1, LA
- MP = LOW + IGH - MM
- MP1 = MP + 1
- C
- DO 110 I = MP1, IGH
- X = A(I,MP-1)
- IF (X .EQ. 0.0E0) GO TO 110
- C
- DO 100 J = 1, M
- 100 Z(I,J) = Z(I,J) + X * Z(MP,J)
- C
- 110 CONTINUE
- C
- I = INT(MP)
- IF (I .EQ. MP) GO TO 140
- C
- DO 130 J = 1, M
- X = Z(I,J)
- Z(I,J) = Z(MP,J)
- Z(MP,J) = X
- 130 CONTINUE
- C
- 140 CONTINUE
- C
- 200 RETURN
- END
|