1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253 |
- *DECK EXPREL
- FUNCTION EXPREL (X)
- C***BEGIN PROLOGUE EXPREL
- C***PURPOSE Calculate the relative error exponential (EXP(X)-1)/X.
- C***LIBRARY SLATEC (FNLIB)
- C***CATEGORY C4B
- C***TYPE SINGLE PRECISION (EXPREL-S, DEXPRL-D, CEXPRL-C)
- C***KEYWORDS ELEMENTARY FUNCTIONS, EXPONENTIAL, FIRST ORDER, FNLIB
- C***AUTHOR Fullerton, W., (LANL)
- C***DESCRIPTION
- C
- C Evaluate EXPREL(X) = (EXP(X) - 1.0) / X. For small ABS(X) the
- C Taylor series is used. If X is negative, the reflection formula
- C EXPREL(X) = EXP(X) * EXPREL(ABS(X))
- C may be used. This reflection formula will be of use when the
- C evaluation for small ABS(X) is done by Chebyshev series rather than
- C Taylor series. EXPREL and X are single precision.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 770801 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE EXPREL
- LOGICAL FIRST
- SAVE NTERMS, XBND, FIRST
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT EXPREL
- IF (FIRST) THEN
- ALNEPS = LOG(R1MACH(3))
- XN = 3.72 - 0.3*ALNEPS
- XLN = LOG((XN+1.0)/1.36)
- NTERMS = XN - (XN*XLN+ALNEPS)/(XLN+1.36) + 1.5
- XBND = R1MACH(3)
- ENDIF
- FIRST = .FALSE.
- C
- ABSX = ABS(X)
- IF (ABSX.GT.0.5) EXPREL = (EXP(X) - 1.0) / X
- IF (ABSX.GT.0.5) RETURN
- C
- EXPREL = 1.0
- IF (ABSX.LT.XBND) RETURN
- C
- EXPREL = 0.0
- DO 20 I=1,NTERMS
- EXPREL = 1.0 + EXPREL*X/(NTERMS+2-I)
- 20 CONTINUE
- C
- RETURN
- END
|