123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- *DECK FIGI2
- SUBROUTINE FIGI2 (NM, N, T, D, E, Z, IERR)
- C***BEGIN PROLOGUE FIGI2
- C***PURPOSE Transforms certain real non-symmetric tridiagonal matrix
- C to symmetric tridiagonal matrix.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1C
- C***TYPE SINGLE PRECISION (FIGI2-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C Given a NONSYMMETRIC TRIDIAGONAL matrix such that the products
- C of corresponding pairs of off-diagonal elements are all
- C non-negative, and zero only when both factors are zero, this
- C subroutine reduces it to a SYMMETRIC TRIDIAGONAL matrix
- C using and accumulating diagonal similarity transformations.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, T and Z, as declared in the calling
- C program dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix T. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C T contains the nonsymmetric matrix. Its subdiagonal is
- C stored in the last N-1 positions of the first column,
- C its diagonal in the N positions of the second column,
- C and its superdiagonal in the first N-1 positions of
- C the third column. T(1,1) and T(N,3) are arbitrary.
- C T is a two-dimensional REAL array, dimensioned T(NM,3).
- C
- C On OUTPUT
- C
- C T is unaltered.
- C
- C D contains the diagonal elements of the tridiagonal symmetric
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the tridiagonal
- C symmetric matrix in its last N-1 positions. E(1) is not set.
- C E is a one-dimensional REAL array, dimensioned E(N).
- C
- C Z contains the diagonal transformation matrix produced in the
- C symmetrization. Z is a two-dimensional REAL array,
- C dimensioned Z(NM,N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C N+I if T(I,1)*T(I-1,3) is negative,
- C 2*N+I if T(I,1)*T(I-1,3) is zero with one factor
- C non-zero. In these cases, there does not exist
- C a symmetrizing similarity transformation which
- C is essential for the validity of the later
- C eigenvector computation.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE FIGI2
- C
- INTEGER I,J,N,NM,IERR
- REAL T(NM,3),D(*),E(*),Z(NM,*)
- REAL H
- C
- C***FIRST EXECUTABLE STATEMENT FIGI2
- IERR = 0
- C
- DO 100 I = 1, N
- C
- DO 50 J = 1, N
- 50 Z(I,J) = 0.0E0
- C
- IF (I .EQ. 1) GO TO 70
- H = T(I,1) * T(I-1,3)
- IF (H) 900, 60, 80
- 60 IF (T(I,1) .NE. 0.0E0 .OR. T(I-1,3) .NE. 0.0E0) GO TO 1000
- E(I) = 0.0E0
- 70 Z(I,I) = 1.0E0
- GO TO 90
- 80 E(I) = SQRT(H)
- Z(I,I) = Z(I-1,I-1) * E(I) / T(I-1,3)
- 90 D(I) = T(I,2)
- 100 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- PRODUCT OF SOME PAIR OF OFF-DIAGONAL
- C ELEMENTS IS NEGATIVE ..........
- 900 IERR = N + I
- GO TO 1001
- C .......... SET ERROR -- PRODUCT OF SOME PAIR OF OFF-DIAGONAL
- C ELEMENTS IS ZERO WITH ONE MEMBER NON-ZERO ..........
- 1000 IERR = 2 * N + I
- 1001 RETURN
- END
|