fundoc.f 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218
  1. *DECK FUNDOC
  2. SUBROUTINE FUNDOC
  3. C***BEGIN PROLOGUE FUNDOC
  4. C***PURPOSE Documentation for FNLIB, a collection of routines for
  5. C evaluating elementary and special functions.
  6. C***LIBRARY SLATEC
  7. C***CATEGORY C, Z
  8. C***TYPE ALL (FUNDOC-A)
  9. C***KEYWORDS DOCUMENTATION, ELEMENTARY FUNCTIONS, SPECIAL FUNCTIONS
  10. C***AUTHOR Kahaner, D. K., (NBS)
  11. C***DESCRIPTION
  12. C
  13. C The SLATEC Library -- Elementary And Special Functions
  14. C
  15. C This describes the elementary and special function routines available
  16. C in the SLATEC library. Most of the these routines were written by
  17. C Wayne Fullerton while at LANL. Some were written by Don Amos of SNLA.
  18. C There are approximately 63 single precision, 63 double precision and
  19. C 25 complex user callable elementary and special function routines.
  20. C
  21. C The table below gives a breakdown of routines according to their
  22. C function. Unless otherwise indicated all routines are function
  23. C subprograms.
  24. C Sngl. Dble.
  25. C Description Notation Prec. Prec. Complex
  26. C
  27. C ***Intrinsic Functions and Fundamental Functions***
  28. C Unpack floating point Call R9UPAK(X,Y,N) D9UPAK --
  29. C number
  30. C Pack floating point R9PAK(Y,N) D9PAK --
  31. C number
  32. C Initialize orthogonal INITS(OS,NOS,ETA) INITDS --
  33. C polynomial series
  34. C Evaluate Chebyshev summation for CSEVL(X,CS,N) DCSEVL --
  35. C series i = 1 to n of
  36. C cs(i)*(2*x)**(i-1)
  37. C
  38. C ***Elementary Functions***
  39. C Argument = theta in z = \ z \ * -- -- CARG(Z)
  40. C radians e**(i * theta)
  41. C Cube root CBRT(X) DCBRT CCBRT
  42. C Relative error exponen- ((e**x) -1) / x EXPREL(X) DEXPRL CEXPRL
  43. C tial from first order
  44. C Common logarithm log to the base 10 -- -- CLOG10(Z)
  45. C of z
  46. C Relative error logarithm ln(1 + x) ALNREL(X) DLNREL CLNREL
  47. C Relative error logarithm (ln(1 + x) - x R9LN2R(X) D9LN2R C9LN2R
  48. C from second order + x**2/2) / x**3
  49. C ***Trigonometric and Hyperbolic Functions***
  50. C Tangent tan z -- -- CTAN(Z)
  51. C Cotangent cot x COT(X) DCOT CCOT
  52. C Sine x in degrees sin((2*pi*x)/360) SINDG(X) DSINDG --
  53. C Cosine x in degrees cos((2*pi*x)/360) COSDG(X) DCOSDG --
  54. C Arc sine arcsin (z) -- -- CASIN(Z)
  55. C Arc cosine arccos (z) -- -- CACOS(Z)
  56. C Arc tangent arctan (z) -- -- CATAN(Z)
  57. C Quadrant correct arctan (z1/z2) -- -- CATAN2(Z1,
  58. C arc tangent Z2)
  59. C Hyperbolic sine sinh z -- -- CSINH(Z)
  60. C Hyperbolic cosine cosh z -- -- CCOSH(Z)
  61. C Hyperbolic tangent tanh z -- -- CTANH(Z)
  62. C Arc hyperbolic sine arcsinh (x) ASINH(X) DASINH CASINH
  63. C Arc hyperbolic cosine arccosh (x) ACOSH(X) DACOSH CACOSH
  64. C Arc hyperbolic tangent arctanh (x) ATANH(X) DATANH CATANH
  65. C Relative error arc (arctan (x) - x) R9ATN1(X) D9ATN1 --
  66. C tangent from first order / x**3
  67. C ***Exponential Integrals and Related Functions***
  68. C Exponential integral Ei(x) = (minus) EI(X) DEI --
  69. C the integral from
  70. C -x to infinity of
  71. C (e**-t / t)dt
  72. C Exponential integral E sub 1 (x) = E1(X) DE1 --
  73. C the integral from x
  74. C to infinity of
  75. C (e**-t / t) dt
  76. C Logarithmic integral li(x) = the ALI(X) DLI --
  77. C integral from 0 to
  78. C x of (1 / ln t) dt
  79. C Sequences of exponential integrals.
  80. C M values are computed where
  81. C k=0,1,...M-1 and n>=1
  82. C Exponential integral E sub n+k (x) Call EXINT(X, DEXINT --
  83. C =the integral from N,KODE,M,TOL,
  84. C 1 to infinity of EN,IERR)
  85. C (e**(-x*t)/t**(n+k))dt
  86. C ***Gamma Functions and Related Functions***
  87. C Factorial n! FAC(N) DFAC --
  88. C Binomial n!/(m!*(n-m)!) BINOM(N,M) DBINOM --
  89. C Gamma gamma(x) GAMMA(X) DGAMMA CGAMMA
  90. C Gamma(x) under and Call GAMLIM( DGAMLM --
  91. C overflow limits XMIN,XMAX)
  92. C Reciprocal gamma 1 / gamma(x) GAMR(X) DGAMR CGAMR
  93. C Log abs gamma ln \gamma(x)\ ALNGAM(X) DLNGAM --
  94. C Log gamma ln gamma(z) -- -- CLNGAM
  95. C Log abs gamma g = ln \gamma(x)\ Call ALGAMS(X, DLGAMS --
  96. C with sign s = sign gamma(x) G,S)
  97. C Incomplete gamma gamma(a,x) = GAMI(A,X) DGAMI --
  98. C the integral from
  99. C 0 to x of
  100. C (t**(a-1) * e**-t)dt
  101. C Complementary gamma(a,x) = GAMIC(A,X) DGAMIC --
  102. C incomplete gamma the integral from
  103. C x to infinity of
  104. C (t**(a-1) * e**-t)dt
  105. C Tricomi's gamma super star(a,x) GAMIT(A,X) DGAMIT --
  106. C incomplete gamma = x**-a *
  107. C incomplete gamma(a,x)
  108. C / gamma(a)
  109. C Psi (Digamma) psi(x) = gamma'(x) PSI(X) DPSI CPSI
  110. C / gamma(x)
  111. C Pochhammer's (a) sub x = gamma(a+x) POCH(A,X) DPOCH --
  112. C generalized symbol / gamma(a)
  113. C Pochhammer's symbol ((a) sub x -1) / x POCH1(A,X) DPOCH1 --
  114. C from first order
  115. C Beta b(a,b) = (gamma(a) BETA(A,B) DBETA CBETA
  116. C * gamma(b))
  117. C / gamma(a+b)
  118. C = the integral
  119. C from 0 to 1 of
  120. C (t**(a-1) *
  121. C (1-t)**(b-1))dt
  122. C Log beta ln b(a,b) ALBETA(A,B) DLBETA CLBETA
  123. C Incomplete beta i sub x (a,b) = BETAI(X,A,B) DBETAI __
  124. C b sub x (a,b) / b(a,b)
  125. C = 1 / b(a,b) *
  126. C the integral
  127. C from 0 to x of
  128. C (t**(a-1) *
  129. C (1-t)**(b-1))dt
  130. C Log gamma correction ln gamma(x) - R9LGMC(X) D9LGMC C9LGMC
  131. C term when Stirling's (ln(2 * pi))/2 -
  132. C approximation is valid (x - 1/2) * ln(x) + x
  133. C ***Error Functions and Fresnel Integrals***
  134. C Error function erf x = (2 / ERF(X) DERF --
  135. C square root of pi) *
  136. C the integral from
  137. C 0 to x of
  138. C e**(-t**2)dt
  139. C Complementary erfc x = (2 / ERFC(X) DERFC --
  140. C error function square root of pi) *
  141. C the integral from
  142. C x to infinity of
  143. C e**(-t**2)dt
  144. C Dawson's function F(x) = e**(-x**2) DAWS(X) DDAWS --
  145. C * the integral from
  146. C from 0 to x of
  147. C e**(t**2)dt
  148. C ***Bessel Functions***
  149. C Bessel functions of special integer order
  150. C First kind, order zero J sub 0 (x) BESJ0(X) DBESJ0 --
  151. C First kind, order one J sub 1 (x) BESJ1(X) DBESJ1 --
  152. C Second kind, order zero Y sub 0 (x) BESY0(X) DBESY0 --
  153. C Second kind, order one Y sub 1 (x) BESY1(X) DBESY1 --
  154. C Modified (hyperbolic) Bessel functions of special integer order
  155. C First kind, order zero I sub 0 (x) BESI0(X) DBESI0 --
  156. C First kind, order one I sub 1 (x) BESI1(X) DBESI1 --
  157. C Third kind, order zero K sub 0 (x) BESK0(X) DBESK0 --
  158. C Third kind, order one K sub 1 (x) BESK1(X) DBESK1 --
  159. C Modified (hyperbolic) Bessel functions of special integer order
  160. C scaled by an exponential
  161. C First kind, order zero e**-\x\ * I sub 0(x) BESI0E(X) DBSI0E --
  162. C First kind, order one e**-\x\ * I sub 1(x) BESI1E(X) DBSI1E --
  163. C Third kind, order zero e**x * K sub 0 (x) BESK0E(X) DBSK0E --
  164. C Third kind, order one e**x * K sub 1 (x) BESK1E(X) DBSK1E --
  165. C Sequences of Bessel functions of general order.
  166. C N values are computed where k = 1,2,...N and v .ge. 0.
  167. C Modified first kind I sub v+k-1 (x) Call BESI(X, DBESI --
  168. C optional scaling ALPHA,KODE,N,
  169. C by e**(-x) Y,NZ)
  170. C First kind J sub v+k-1 (x) Call BESJ(X, DBESJ --
  171. C ALPHA,N,Y,NZ)
  172. C Second kind Y sub v+k-1 (x) Call BESY(X, DBESY --
  173. C FNU,N,Y)
  174. C Modified third kind K sub v+k-1 (x) Call BESK(X, DBESK --
  175. C optional scaling FNU,KODE,N,Y,
  176. C by e**(x) NZ)
  177. C Sequences of Bessel functions. \N\ values are computed where
  178. C I = 0, 1, 2, ..., N-1 for N > 0 or I = 0, -1, -2, ..., N+1
  179. C for N < 0.
  180. C Modified third kind K sub v+i (x) Call BESKS( DBESKS --
  181. C XNU,X,N,BK)
  182. C Sequences of Bessel functions scaled by an exponential.
  183. C \N\ values are computed where I = 0, 1, 2, ..., N-1
  184. C for N > 0 or I = 0, -1, -2, ..., N+1 for N < 0.
  185. C Modified third kind e**x * Call BESKES( DBSKES --
  186. C K sub v+i (x) XNU,X,N,BK)
  187. C ***Bessel Functions of Fractional Order***
  188. C Airy functions
  189. C Airy Ai(x) AI(X) DAI --
  190. C Bairy Bi(x) BI(X) DBI --
  191. C Exponentially scaled Airy functions
  192. C Airy Ai(x), x <= 0 AIE(X) DAIE --
  193. C exp(2/3 * x**(3/2))
  194. C * Ai(x), x >= 0
  195. C Bairy Bi(x), x <= 0 BIE(X) DBIE --
  196. C exp(-2/3 * x**(3/2))
  197. C * Bi(x), x >= 0
  198. C ***Confluent Hypergeometric Functions***
  199. C Confluent U(a,b,x) CHU(A,B,X) DCHU --
  200. C hypergeometric
  201. C ***Miscellaneous Functions***
  202. C Spence s(x) = - the SPENC(X) DSPENC --
  203. C dilogarithm integral from
  204. C 0 to x of
  205. C ((ln \1-y\) / y)dy
  206. C
  207. C***REFERENCES (NONE)
  208. C***ROUTINES CALLED (NONE)
  209. C***REVISION HISTORY (YYMMDD)
  210. C 801015 DATE WRITTEN
  211. C 861211 REVISION DATE from Version 3.2
  212. C 891214 Prologue converted to Version 4.0 format. (BAB)
  213. C 900326 Routine name changed from FNLIBD to FUNDOC. (WRB)
  214. C 900723 PURPOSE section revised. (WRB)
  215. C***END PROLOGUE FUNDOC
  216. C***FIRST EXECUTABLE STATEMENT FUNDOC
  217. RETURN
  218. END