123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- *DECK GAMRN
- REAL FUNCTION GAMRN (X)
- C***BEGIN PROLOGUE GAMRN
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to BSKIN
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (GAMRN-S, DGAMRN-D)
- C***AUTHOR Amos, D. E., (SNLA)
- C***DESCRIPTION
- C
- C Abstract
- C GAMRN computes the GAMMA function ratio GAMMA(X)/GAMMA(X+0.5)
- C for real X.gt.0. If X.ge.XMIN, an asymptotic expansion is
- C evaluated. If X.lt.XMIN, an integer is added to X to form a
- C new value of X.ge.XMIN and the asymptotic expansion is eval-
- C uated for this new value of X. Successive application of the
- C recurrence relation
- C
- C W(X)=W(X+1)*(1+0.5/X)
- C
- C reduces the argument to its original value. XMIN and comp-
- C utational tolerances are computed as a function of the number
- C of digits carried in a word by calls to I1MACH and R1MACH.
- C However, the computational accuracy is limited to the max-
- C imum of unit roundoff (=R1MACH(4)) and 1.0E-18 since critical
- C constants are given to only 18 digits.
- C
- C Input
- C X - Argument, X.gt.0.0
- C
- C OUTPUT
- C GAMRN - Ratio GAMMA(X)/GAMMA(X+0.5)
- C
- C***SEE ALSO BSKIN
- C***REFERENCES Y. L. Luke, The Special Functions and Their
- C Approximations, Vol. 1, Math In Sci. And
- C Eng. Series 53, Academic Press, New York, 1969,
- C pp. 34-35.
- C***ROUTINES CALLED I1MACH, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 820601 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C 910722 Updated AUTHOR section. (ALS)
- C 920520 Added REFERENCES section. (WRB)
- C***END PROLOGUE GAMRN
- INTEGER I, I1M11, K, MX, NX
- INTEGER I1MACH
- REAL FLN, GR, RLN, S, TOL, TRM, X, XDMY, XINC, XM, XMIN, XP, XSQ
- REAL R1MACH
- DIMENSION GR(12)
- SAVE GR
- C
- DATA GR(1), GR(2), GR(3), GR(4), GR(5), GR(6), GR(7), GR(8),
- * GR(9), GR(10), GR(11), GR(12) /1.00000000000000000E+00,
- * -1.56250000000000000E-02,2.56347656250000000E-03,
- * -1.27983093261718750E-03,1.34351104497909546E-03,
- * -2.43289663922041655E-03,6.75423753364157164E-03,
- * -2.66369606131178216E-02,1.41527455519564332E-01,
- * -9.74384543032201613E-01,8.43686251229783675E+00,
- * -8.97258321640552515E+01/
- C
- C***FIRST EXECUTABLE STATEMENT GAMRN
- NX = INT(X)
- TOL = MAX(R1MACH(4),1.0E-18)
- I1M11 = I1MACH(11)
- RLN = R1MACH(5)*I1M11
- FLN = MIN(RLN,20.0E0)
- FLN = MAX(FLN,3.0E0)
- FLN = FLN - 3.0E0
- XM = 2.0E0 + FLN*(0.2366E0+0.01723E0*FLN)
- MX = INT(XM) + 1
- XMIN = MX
- XDMY = X - 0.25E0
- XINC = 0.0E0
- IF (X.GE.XMIN) GO TO 10
- XINC = XMIN - NX
- XDMY = XDMY + XINC
- 10 CONTINUE
- S = 1.0E0
- IF (XDMY*TOL.GT.1.0E0) GO TO 30
- XSQ = 1.0E0/(XDMY*XDMY)
- XP = XSQ
- DO 20 K=2,12
- TRM = GR(K)*XP
- IF (ABS(TRM).LT.TOL) GO TO 30
- S = S + TRM
- XP = XP*XSQ
- 20 CONTINUE
- 30 CONTINUE
- S = S/SQRT(XDMY)
- IF (XINC.NE.0.0E0) GO TO 40
- GAMRN = S
- RETURN
- 40 CONTINUE
- NX = INT(XINC)
- XP = 0.0E0
- DO 50 I=1,NX
- S = S*(1.0E0+0.5E0/(X+XP))
- XP = XP + 1.0E0
- 50 CONTINUE
- GAMRN = S
- RETURN
- END
|