123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- *DECK GENBUN
- SUBROUTINE GENBUN (NPEROD, N, MPEROD, M, A, B, C, IDIMY, Y,
- + IERROR, W)
- C***BEGIN PROLOGUE GENBUN
- C***PURPOSE Solve by a cyclic reduction algorithm the linear system
- C of equations that results from a finite difference
- C approximation to certain 2-d elliptic PDE's on a centered
- C grid .
- C***LIBRARY SLATEC (FISHPACK)
- C***CATEGORY I2B4B
- C***TYPE SINGLE PRECISION (GENBUN-S, CMGNBN-C)
- C***KEYWORDS ELLIPTIC, FISHPACK, PDE, TRIDIAGONAL
- C***AUTHOR Adams, J., (NCAR)
- C Swarztrauber, P. N., (NCAR)
- C Sweet, R., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine GENBUN solves the linear system of equations
- C
- C A(I)*X(I-1,J) + B(I)*X(I,J) + C(I)*X(I+1,J)
- C
- C + X(I,J-1) - 2.*X(I,J) + X(I,J+1) = Y(I,J)
- C
- C for I = 1,2,...,M and J = 1,2,...,N.
- C
- C The indices I+1 and I-1 are evaluated modulo M, i.e.,
- C X(0,J) = X(M,J) and X(M+1,J) = X(1,J), and X(I,0) may be equal to
- C 0, X(I,2), or X(I,N) and X(I,N+1) may be equal to 0, X(I,N-1), or
- C X(I,1) depending on an input parameter.
- C
- C
- C * * * * * * * * Parameter Description * * * * * * * * * *
- C
- C * * * * * * On Input * * * * * *
- C
- C NPEROD
- C Indicates the values that X(I,0) and X(I,N+1) are assumed to
- C have.
- C
- C = 0 If X(I,0) = X(I,N) and X(I,N+1) = X(I,1).
- C = 1 If X(I,0) = X(I,N+1) = 0 .
- C = 2 If X(I,0) = 0 and X(I,N+1) = X(I,N-1).
- C = 3 If X(I,0) = X(I,2) and X(I,N+1) = X(I,N-1).
- C = 4 If X(I,0) = X(I,2) and X(I,N+1) = 0.
- C
- C N
- C The number of unknowns in the J-direction. N must be greater
- C than 2.
- C
- C MPEROD
- C = 0 if A(1) and C(M) are not zero.
- C = 1 if A(1) = C(M) = 0.
- C
- C M
- C The number of unknowns in the I-direction. M must be greater
- C than 2.
- C
- C A,B,C
- C One-dimensional arrays of length M that specify the
- C coefficients in the linear equations given above. If MPEROD = 0
- C the array elements must not depend upon the index I, but must be
- C constant. Specifically, the subroutine checks the following
- C condition
- C
- C A(I) = C(1)
- C C(I) = C(1)
- C B(I) = B(1)
- C
- C for I=1,2,...,M.
- C
- C IDIMY
- C The row (or first) dimension of the two-dimensional array Y as
- C it appears in the program calling GENBUN. This parameter is
- C used to specify the variable dimension of Y. IDIMY must be at
- C least M.
- C
- C Y
- C A two-dimensional array that specifies the values of the right
- C side of the linear system of equations given above. Y must be
- C dimensioned at least M*N.
- C
- C W
- C A one-dimensional array that must be provided by the user for
- C work space. W may require up to 4*N + (10 + INT(log2(N)))*M
- C locations. The actual number of locations used is computed by
- C GENBUN and is returned in location W(1).
- C
- C
- C * * * * * * On Output * * * * * *
- C
- C Y
- C Contains the solution X.
- C
- C IERROR
- C An error flag that indicates invalid input parameters. Except
- C for number zero, a solution is not attempted.
- C
- C = 0 No error.
- C = 1 M .LE. 2
- C = 2 N .LE. 2
- C = 3 IDIMY .LT. M
- C = 4 NPEROD .LT. 0 or NPEROD .GT. 4
- C = 5 MPEROD .LT. 0 or MPEROD .GT. 1
- C = 6 A(I) .NE. C(1) or C(I) .NE. C(1) or B(I) .NE. B(1) for
- C some I=1,2,...,M.
- C = 7 A(1) .NE. 0 or C(M) .NE. 0 and MPEROD = 1
- C
- C W
- C W(1) contains the required length of W.
- C
- C *Long Description:
- C
- C * * * * * * * Program Specifications * * * * * * * * * * * *
- C
- C Dimension of A(M),B(M),C(M),Y(IDIMY,N),W(see parameter list)
- C Arguments
- C
- C Latest June 1, 1976
- C Revision
- C
- C Subprograms GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,TRIX,TRI3,
- C Required PIMACH
- C
- C Special NONE
- C Conditions
- C
- C Common NONE
- C Blocks
- C
- C I/O NONE
- C
- C Precision Single
- C
- C Specialist Roland Sweet
- C
- C Language FORTRAN
- C
- C History Standardized April 1, 1973
- C Revised August 20,1973
- C Revised January 1, 1976
- C
- C Algorithm The linear system is solved by a cyclic reduction
- C algorithm described in the reference.
- C
- C Space 4944(decimal) = 11520(octal) locations on the NCAR
- C Required Control Data 7600.
- C
- C Timing and The execution time T on the NCAR Control Data
- C Accuracy 7600 for subroutine GENBUN is roughly proportional
- C to M*N*log2(N), but also depends on the input
- C parameter NPEROD. Some typical values are listed
- C in the table below. More comprehensive timing
- C charts may be found in the reference.
- C To measure the accuracy of the algorithm a
- C uniform random number generator was used to create
- C a solution array X for the system given in the
- C 'PURPOSE' with
- C
- C A(I) = C(I) = -0.5*B(I) = 1, I=1,2,...,M
- C
- C and, when MPEROD = 1
- C
- C A(1) = C(M) = 0
- C A(M) = C(1) = 2.
- C
- C The solution X was substituted into the given sys-
- C tem and, using double precision, a right side Y was
- C computed. Using this array Y subroutine GENBUN was
- C called to produce an approximate solution Z. Then
- C the relative error, defined as
- C
- C E = MAX(ABS(Z(I,J)-X(I,J)))/MAX(ABS(X(I,J)))
- C
- C where the two maxima are taken over all I=1,2,...,M
- C and J=1,2,...,N, was computed. The value of E is
- C given in the table below for some typical values of
- C M and N.
- C
- C
- C M (=N) MPEROD NPEROD T(MSECS) E
- C ------ ------ ------ -------- ------
- C
- C 31 0 0 36 6.E-14
- C 31 1 1 21 4.E-13
- C 31 1 3 41 3.E-13
- C 32 0 0 29 9.E-14
- C 32 1 1 32 3.E-13
- C 32 1 3 48 1.E-13
- C 33 0 0 36 9.E-14
- C 33 1 1 30 4.E-13
- C 33 1 3 34 1.E-13
- C 63 0 0 150 1.E-13
- C 63 1 1 91 1.E-12
- C 63 1 3 173 2.E-13
- C 64 0 0 122 1.E-13
- C 64 1 1 128 1.E-12
- C 64 1 3 199 6.E-13
- C 65 0 0 143 2.E-13
- C 65 1 1 120 1.E-12
- C 65 1 3 138 4.E-13
- C
- C Portability American National Standards Institute Fortran.
- C The machine dependent constant PI is defined in
- C function PIMACH.
- C
- C Required COS
- C Resident
- C Routines
- C
- C Reference Sweet, R., 'A Cyclic Reduction Algorithm For
- C Solving Block Tridiagonal Systems Of Arbitrary
- C Dimensions,' SIAM J. on Numer. Anal.,
- C 14(Sept., 1977), PP. 706-720.
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C***REFERENCES R. Sweet, A cyclic reduction algorithm for solving
- C block tridiagonal systems of arbitrary dimensions,
- C SIAM Journal on Numerical Analysis 14, (September
- C 1977), pp. 706-720.
- C***ROUTINES CALLED POISD2, POISN2, POISP2
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 861211 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE GENBUN
- C
- C
- DIMENSION Y(IDIMY,*)
- DIMENSION W(*) ,B(*) ,A(*) ,C(*)
- C***FIRST EXECUTABLE STATEMENT GENBUN
- IERROR = 0
- IF (M .LE. 2) IERROR = 1
- IF (N .LE. 2) IERROR = 2
- IF (IDIMY .LT. M) IERROR = 3
- IF (NPEROD.LT.0 .OR. NPEROD.GT.4) IERROR = 4
- IF (MPEROD.LT.0 .OR. MPEROD.GT.1) IERROR = 5
- IF (MPEROD .EQ. 1) GO TO 102
- DO 101 I=2,M
- IF (A(I) .NE. C(1)) GO TO 103
- IF (C(I) .NE. C(1)) GO TO 103
- IF (B(I) .NE. B(1)) GO TO 103
- 101 CONTINUE
- GO TO 104
- 102 IF (A(1).NE.0. .OR. C(M).NE.0.) IERROR = 7
- GO TO 104
- 103 IERROR = 6
- 104 IF (IERROR .NE. 0) RETURN
- MP1 = M+1
- IWBA = MP1
- IWBB = IWBA+M
- IWBC = IWBB+M
- IWB2 = IWBC+M
- IWB3 = IWB2+M
- IWW1 = IWB3+M
- IWW2 = IWW1+M
- IWW3 = IWW2+M
- IWD = IWW3+M
- IWTCOS = IWD+M
- IWP = IWTCOS+4*N
- DO 106 I=1,M
- K = IWBA+I-1
- W(K) = -A(I)
- K = IWBC+I-1
- W(K) = -C(I)
- K = IWBB+I-1
- W(K) = 2.-B(I)
- DO 105 J=1,N
- Y(I,J) = -Y(I,J)
- 105 CONTINUE
- 106 CONTINUE
- MP = MPEROD+1
- NP = NPEROD+1
- GO TO (114,107),MP
- 107 GO TO (108,109,110,111,123),NP
- 108 CALL POISP2 (M,N,W(IWBA),W(IWBB),W(IWBC),Y,IDIMY,W,W(IWB2),
- 1 W(IWB3),W(IWW1),W(IWW2),W(IWW3),W(IWD),W(IWTCOS),
- 2 W(IWP))
- GO TO 112
- 109 CALL POISD2 (M,N,1,W(IWBA),W(IWBB),W(IWBC),Y,IDIMY,W,W(IWW1),
- 1 W(IWD),W(IWTCOS),W(IWP))
- GO TO 112
- 110 CALL POISN2 (M,N,1,2,W(IWBA),W(IWBB),W(IWBC),Y,IDIMY,W,W(IWB2),
- 1 W(IWB3),W(IWW1),W(IWW2),W(IWW3),W(IWD),W(IWTCOS),
- 2 W(IWP))
- GO TO 112
- 111 CALL POISN2 (M,N,1,1,W(IWBA),W(IWBB),W(IWBC),Y,IDIMY,W,W(IWB2),
- 1 W(IWB3),W(IWW1),W(IWW2),W(IWW3),W(IWD),W(IWTCOS),
- 2 W(IWP))
- 112 IPSTOR = W(IWW1)
- IREV = 2
- IF (NPEROD .EQ. 4) GO TO 124
- 113 GO TO (127,133),MP
- 114 CONTINUE
- C
- C REORDER UNKNOWNS WHEN MP =0
- C
- MH = (M+1)/2
- MHM1 = MH-1
- MODD = 1
- IF (MH*2 .EQ. M) MODD = 2
- DO 119 J=1,N
- DO 115 I=1,MHM1
- MHPI = MH+I
- MHMI = MH-I
- W(I) = Y(MHMI,J)-Y(MHPI,J)
- W(MHPI) = Y(MHMI,J)+Y(MHPI,J)
- 115 CONTINUE
- W(MH) = 2.*Y(MH,J)
- GO TO (117,116),MODD
- 116 W(M) = 2.*Y(M,J)
- 117 CONTINUE
- DO 118 I=1,M
- Y(I,J) = W(I)
- 118 CONTINUE
- 119 CONTINUE
- K = IWBC+MHM1-1
- I = IWBA+MHM1
- W(K) = 0.
- W(I) = 0.
- W(K+1) = 2.*W(K+1)
- GO TO (120,121),MODD
- 120 CONTINUE
- K = IWBB+MHM1-1
- W(K) = W(K)-W(I-1)
- W(IWBC-1) = W(IWBC-1)+W(IWBB-1)
- GO TO 122
- 121 W(IWBB-1) = W(K+1)
- 122 CONTINUE
- GO TO 107
- C
- C REVERSE COLUMNS WHEN NPEROD = 4.
- C
- 123 IREV = 1
- NBY2 = N/2
- 124 DO 126 J=1,NBY2
- MSKIP = N+1-J
- DO 125 I=1,M
- A1 = Y(I,J)
- Y(I,J) = Y(I,MSKIP)
- Y(I,MSKIP) = A1
- 125 CONTINUE
- 126 CONTINUE
- GO TO (110,113),IREV
- 127 CONTINUE
- DO 132 J=1,N
- DO 128 I=1,MHM1
- MHMI = MH-I
- MHPI = MH+I
- W(MHMI) = .5*(Y(MHPI,J)+Y(I,J))
- W(MHPI) = .5*(Y(MHPI,J)-Y(I,J))
- 128 CONTINUE
- W(MH) = .5*Y(MH,J)
- GO TO (130,129),MODD
- 129 W(M) = .5*Y(M,J)
- 130 CONTINUE
- DO 131 I=1,M
- Y(I,J) = W(I)
- 131 CONTINUE
- 132 CONTINUE
- 133 CONTINUE
- C
- C RETURN STORAGE REQUIREMENTS FOR W ARRAY.
- C
- W(1) = IPSTOR+IWP-1
- RETURN
- END
|