123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- *DECK H12
- SUBROUTINE H12 (MODE, LPIVOT, L1, M, U, IUE, UP, C, ICE, ICV, NCV)
- C***BEGIN PROLOGUE H12
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to HFTI, LSEI and WNNLS
- C***LIBRARY SLATEC
- C***TYPE SINGLE PRECISION (H12-S, DH12-D)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C C.L.Lawson and R.J.Hanson, Jet Propulsion Laboratory, 1973 Jun 12
- C to appear in 'Solving Least Squares Problems', Prentice-Hall, 1974
- C
- C Construction and/or application of a single
- C Householder transformation.. Q = I + U*(U**T)/B
- C
- C MODE = 1 or 2 to select algorithm H1 or H2 .
- C LPIVOT is the index of the pivot element.
- C L1,M If L1 .LE. M the transformation will be constructed to
- C zero elements indexed from L1 through M. If L1 GT. M
- C THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
- C U(),IUE,UP On entry to H1 U() contains the pivot vector.
- C IUE is the storage increment between elements.
- C On exit from H1 U() and UP
- C contain quantities defining the vector U of the
- C Householder transformation. On entry to H2 U()
- C and UP should contain quantities previously computed
- C by H1. These will not be modified by H2.
- C C() On entry to H1 or H2 C() contains a matrix which will be
- C regarded as a set of vectors to which the Householder
- C transformation is to be applied. On exit C() contains the
- C set of transformed vectors.
- C ICE Storage increment between elements of vectors in C().
- C ICV Storage increment between vectors in C().
- C NCV Number of vectors in C() to be transformed. If NCV .LE. 0
- C no operations will be done on C().
- C
- C***SEE ALSO HFTI, LSEI, WNNLS
- C***ROUTINES CALLED SAXPY, SDOT, SSWAP
- C***REVISION HISTORY (YYMMDD)
- C 790101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900328 Added TYPE section. (WRB)
- C***END PROLOGUE H12
- DIMENSION U(IUE,*), C(*)
- C***FIRST EXECUTABLE STATEMENT H12
- ONE=1.
- C
- IF (0.GE.LPIVOT.OR.LPIVOT.GE.L1.OR.L1.GT.M) RETURN
- CL=ABS(U(1,LPIVOT))
- IF (MODE.EQ.2) GO TO 60
- C ****** CONSTRUCT THE TRANSFORMATION. ******
- DO 10 J=L1,M
- 10 CL=MAX(ABS(U(1,J)),CL)
- IF (CL) 130,130,20
- 20 CLINV=ONE/CL
- SM=(U(1,LPIVOT)*CLINV)**2
- DO 30 J=L1,M
- 30 SM=SM+(U(1,J)*CLINV)**2
- CL=CL*SQRT(SM)
- IF (U(1,LPIVOT)) 50,50,40
- 40 CL=-CL
- 50 UP=U(1,LPIVOT)-CL
- U(1,LPIVOT)=CL
- GO TO 70
- C ****** APPLY THE TRANSFORMATION I+U*(U**T)/B TO C. ******
- C
- 60 IF (CL) 130,130,70
- 70 IF (NCV.LE.0) RETURN
- B=UP*U(1,LPIVOT)
- C B MUST BE NONPOSITIVE HERE. IF B = 0., RETURN.
- C
- IF (B) 80,130,130
- 80 B=ONE/B
- MML1P2=M-L1+2
- IF (MML1P2.GT.20) GO TO 140
- I2=1-ICV+ICE*(LPIVOT-1)
- INCR=ICE*(L1-LPIVOT)
- DO 120 J=1,NCV
- I2=I2+ICV
- I3=I2+INCR
- I4=I3
- SM=C(I2)*UP
- DO 90 I=L1,M
- SM=SM+C(I3)*U(1,I)
- 90 I3=I3+ICE
- IF (SM) 100,120,100
- 100 SM=SM*B
- C(I2)=C(I2)+SM*UP
- DO 110 I=L1,M
- C(I4)=C(I4)+SM*U(1,I)
- 110 I4=I4+ICE
- 120 CONTINUE
- 130 RETURN
- 140 CONTINUE
- L1M1=L1-1
- KL1=1+(L1M1-1)*ICE
- KL2=KL1
- KLP=1+(LPIVOT-1)*ICE
- UL1M1=U(1,L1M1)
- U(1,L1M1)=UP
- IF (LPIVOT.EQ.L1M1) GO TO 150
- CALL SSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
- 150 CONTINUE
- DO 160 J=1,NCV
- SM=SDOT(MML1P2,U(1,L1M1),IUE,C(KL1),ICE)
- SM=SM*B
- CALL SAXPY (MML1P2,SM,U(1,L1M1),IUE,C(KL1),ICE)
- KL1=KL1+ICV
- 160 CONTINUE
- U(1,L1M1)=UL1M1
- IF (LPIVOT.EQ.L1M1) RETURN
- KL1=KL2
- CALL SSWAP(NCV,C(KL1),ICV,C(KLP),ICV)
- RETURN
- END
|