123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461 |
- *DECK HSTCYL
- SUBROUTINE HSTCYL (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
- + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
- C***BEGIN PROLOGUE HSTCYL
- C***PURPOSE Solve the standard five-point finite difference
- C approximation on a staggered grid to the modified
- C Helmholtz equation in cylindrical coordinates.
- C***LIBRARY SLATEC (FISHPACK)
- C***CATEGORY I2B1A1A
- C***TYPE SINGLE PRECISION (HSTCYL-S)
- C***KEYWORDS CYLINDRICAL, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
- C***AUTHOR Adams, J., (NCAR)
- C Swarztrauber, P. N., (NCAR)
- C Sweet, R., (NCAR)
- C***DESCRIPTION
- C
- C HSTCYL solves the standard five-point finite difference
- C approximation on a staggered grid to the modified Helmholtz
- C equation in cylindrical coordinates
- C
- C (1/R)(d/dR)(R(dU/dR)) + (d/dZ)(dU/dZ)C
- C + LAMBDA*(1/R**2)*U = F(R,Z)
- C
- C This two-dimensional modified Helmholtz equation results
- C from the Fourier transform of a three-dimensional Poisson
- C equation.
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C * * * * * * * * Parameter Description * * * * * * * * * *
- C
- C * * * * * * On Input * * * * * *
- C
- C A,B
- C The range of R, i.e. A .LE. R .LE. B. A must be less than B and
- C A must be non-negative.
- C
- C M
- C The number of grid points in the interval (A,B). The grid points
- C in the R-direction are given by R(I) = A + (I-0.5)DR for
- C I=1,2,...,M where DR =(B-A)/M. M must be greater than 2.
- C
- C MBDCND
- C Indicates the type of boundary conditions at R = A and R = B.
- C
- C = 1 If the solution is specified at R = A (see note below) and
- C R = B.
- C
- C = 2 If the solution is specified at R = A (see note below) and
- C the derivative of the solution with respect to R is
- C specified at R = B.
- C
- C = 3 If the derivative of the solution with respect to R is
- C specified at R = A (see note below) and R = B.
- C
- C = 4 If the derivative of the solution with respect to R is
- C specified at R = A (see note below) and the solution is
- C specified at R = B.
- C
- C = 5 If the solution is unspecified at R = A = 0 and the solution
- C is specified at R = B.
- C
- C = 6 If the solution is unspecified at R = A = 0 and the
- C derivative of the solution with respect to R is specified at
- C R = B.
- C
- C NOTE: If A = 0, do not use MBDCND = 1,2,3, or 4, but instead
- C use MBDCND = 5 or 6. The resulting approximation gives
- C the only meaningful boundary condition, i.e. dU/dR = 0.
- C (see D. Greenspan, 'Introductory Numerical Analysis Of
- C Elliptic Boundary Value Problems,' Harper and Row, 1965,
- C Chapter 5.)
- C
- C BDA
- C A one-dimensional array of length N that specifies the boundary
- C values (if any) of the solution at R = A. When MBDCND = 1 or 2,
- C
- C BDA(J) = U(A,Z(J)) , J=1,2,...,N.
- C
- C When MBDCND = 3 or 4,
- C
- C BDA(J) = (d/dR)U(A,Z(J)) , J=1,2,...,N.
- C
- C When MBDCND = 5 or 6, BDA is a dummy variable.
- C
- C BDB
- C A one-dimensional array of length N that specifies the boundary
- C values of the solution at R = B. When MBDCND = 1,4, or 5,
- C
- C BDB(J) = U(B,Z(J)) , J=1,2,...,N.
- C
- C When MBDCND = 2,3, or 6,
- C
- C BDB(J) = (d/dR)U(B,Z(J)) , J=1,2,...,N.
- C
- C C,D
- C The range of Z, i.e. C .LE. Z .LE. D. C must be less
- C than D.
- C
- C N
- C The number of unknowns in the interval (C,D). The unknowns in
- C the Z-direction are given by Z(J) = C + (J-0.5)DZ,
- C J=1,2,...,N, where DZ = (D-C)/N. N must be greater than 2.
- C
- C NBDCND
- C Indicates the type of boundary conditions at Z = C
- C and Z = D.
- C
- C = 0 If the solution is periodic in Z, i.e.
- C U(I,J) = U(I,N+J).
- C
- C = 1 If the solution is specified at Z = C and Z = D.
- C
- C = 2 If the solution is specified at Z = C and the derivative
- C of the solution with respect to Z is specified at
- C Z = D.
- C
- C = 3 If the derivative of the solution with respect to Z is
- C specified at Z = C and Z = D.
- C
- C = 4 If the derivative of the solution with respect to Z is
- C specified at Z = C and the solution is specified at
- C Z = D.
- C
- C BDC
- C A one dimensional array of length M that specifies the boundary
- C values of the solution at Z = C. When NBDCND = 1 or 2,
- C
- C BDC(I) = U(R(I),C) , I=1,2,...,M.
- C
- C When NBDCND = 3 or 4,
- C
- C BDC(I) = (d/dZ)U(R(I),C), I=1,2,...,M.
- C
- C When NBDCND = 0, BDC is a dummy variable.
- C
- C BDD
- C A one-dimensional array of length M that specifies the boundary
- C values of the solution at Z = D. when NBDCND = 1 or 4,
- C
- C BDD(I) = U(R(I),D) , I=1,2,...,M.
- C
- C When NBDCND = 2 or 3,
- C
- C BDD(I) = (d/dZ)U(R(I),D) , I=1,2,...,M.
- C
- C When NBDCND = 0, BDD is a dummy variable.
- C
- C ELMBDA
- C The constant LAMBDA in the modified Helmholtz equation. If
- C LAMBDA is greater than 0, a solution may not exist. However,
- C HSTCYL will attempt to find a solution. LAMBDA must be zero
- C when MBDCND = 5 or 6.
- C
- C F
- C A two-dimensional array that specifies the values of the right
- C side of the modified Helmholtz equation. For I=1,2,...,M
- C and J=1,2,...,N
- C
- C F(I,J) = F(R(I),Z(J)) .
- C
- C F must be dimensioned at least M X N.
- C
- C IDIMF
- C The row (or first) dimension of the array F as it appears in the
- C program calling HSTCYL. This parameter is used to specify the
- C variable dimension of F. IDIMF must be at least M.
- C
- C W
- C A one-dimensional array that must be provided by the user for
- C work space. W may require up to 13M + 4N + M*INT(log2(N))
- C locations. The actual number of locations used is computed by
- C HSTCYL and is returned in the location W(1).
- C
- C
- C * * * * * * On Output * * * * * *
- C
- C F
- C Contains the solution U(I,J) of the finite difference
- C approximation for the grid point (R(I),Z(J)) for
- C I=1,2,...,M, J=1,2,...,N.
- C
- C PERTRB
- C If a combination of periodic, derivative, or unspecified
- C boundary conditions is specified for a Poisson equation
- C (LAMBDA = 0), a solution may not exist. PERTRB is a con-
- C stant, calculated and subtracted from F, which ensures
- C that a solution exists. HSTCYL then computes this
- C solution, which is a least squares solution to the
- C original approximation. This solution plus any constant is also
- C a solution; hence, the solution is not unique. The value of
- C PERTRB should be small compared to the right side F.
- C Otherwise, a solution is obtained to an essentially different
- C problem. This comparison should always be made to insure that
- C a meaningful solution has been obtained.
- C
- C IERROR
- C An error flag that indicates invalid input parameters.
- C Except for numbers 0 and 11, a solution is not attempted.
- C
- C = 0 No error
- C
- C = 1 A .LT. 0
- C
- C = 2 A .GE. B
- C
- C = 3 MBDCND .LT. 1 or MBDCND .GT. 6
- C
- C = 4 C .GE. D
- C
- C = 5 N .LE. 2
- C
- C = 6 NBDCND .LT. 0 or NBDCND .GT. 4
- C
- C = 7 A = 0 and MBDCND = 1,2,3, or 4
- C
- C = 8 A .GT. 0 and MBDCND .GE. 5
- C
- C = 9 M .LE. 2
- C
- C = 10 IDIMF .LT. M
- C
- C = 11 LAMBDA .GT. 0
- C
- C = 12 A=0, MBDCND .GE. 5, ELMBDA .NE. 0
- C
- C Since this is the only means of indicating a possibly
- C incorrect call to HSTCYL, the user should test IERROR after
- C the call.
- C
- C W
- C W(1) contains the required length of W.
- C
- C *Long Description:
- C
- C * * * * * * * Program Specifications * * * * * * * * * * * *
- C
- C Dimension OF BDA(N),BDB(N),BDC(M),BDD(M),F(IDIMF,N),
- C Arguments W(see argument list)
- C
- C Latest June 1, 1977
- C Revision
- C
- C Subprograms HSTCYL,POISTG,POSTG2,GENBUN,POISD2,POISN2,POISP2,
- C Required COSGEN,MERGE,TRIX,TRI3,PIMACH
- C
- C Special NONE
- C Conditions
- C
- C Common NONE
- C Blocks
- C
- C I/O NONE
- C
- C Precision Single
- C
- C Specialist Roland Sweet
- C
- C Language FORTRAN
- C
- C History Written by Roland Sweet at NCAR in March, 1977
- C
- C Algorithm This subroutine defines the finite-difference
- C equations, incorporates boundary data, adjusts the
- C right side when the system is singular and calls
- C either POISTG or GENBUN which solves the linear
- C system of equations.
- C
- C Space 8228(decimal) = 20044(octal) locations on the
- C Required NCAR Control Data 7600
- C
- C Timing and The execution time T on the NCAR Control Data
- C Accuracy 7600 for subroutine HSTCYL is roughly proportional
- C to M*N*log2(N). Some typical values are listed in
- C the table below.
- C The solution process employed results in a loss
- C of no more than four significant digits for N and M
- C as large as 64. More detailed information about
- C accuracy can be found in the documentation for
- C subroutine POISTG which is the routine that
- C actually solves the finite difference equations.
- C
- C
- C M(=N) MBDCND NBDCND T(MSECS)
- C ----- ------ ------ --------
- C
- C 32 1-6 1-4 56
- C 64 1-6 1-4 230
- C
- C Portability American National Standards Institute Fortran.
- C The machine dependent constant PI is defined in
- C function PIMACH.
- C
- C Required COS
- C Resident
- C Routines
- C
- C Reference Schumann, U. and R. Sweet,'A Direct Method For
- C The Solution of Poisson's Equation With Neumann
- C Boundary Conditions On A Staggered Grid Of
- C Arbitrary Size,' J. Comp. Phys. 20(1976),
- C pp. 171-182.
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C***REFERENCES U. Schumann and R. Sweet, A direct method for the
- C solution of Poisson's equation with Neumann boundary
- C conditions on a staggered grid of arbitrary size,
- C Journal of Computational Physics 20, (1976),
- C pp. 171-182.
- C***ROUTINES CALLED GENBUN, POISTG
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HSTCYL
- C
- C
- DIMENSION F(IDIMF,*) ,BDA(*) ,BDB(*) ,BDC(*) ,
- 1 BDD(*) ,W(*)
- C***FIRST EXECUTABLE STATEMENT HSTCYL
- IERROR = 0
- IF (A .LT. 0.) IERROR = 1
- IF (A .GE. B) IERROR = 2
- IF (MBDCND.LE.0 .OR. MBDCND.GE.7) IERROR = 3
- IF (C .GE. D) IERROR = 4
- IF (N .LE. 2) IERROR = 5
- IF (NBDCND.LT.0 .OR. NBDCND.GE.5) IERROR = 6
- IF (A.EQ.0. .AND. MBDCND.NE.5 .AND. MBDCND.NE.6) IERROR = 7
- IF (A.GT.0. .AND. MBDCND.GE.5) IERROR = 8
- IF (IDIMF .LT. M) IERROR = 10
- IF (M .LE. 2) IERROR = 9
- IF (A.EQ.0. .AND. MBDCND.GE.5 .AND. ELMBDA.NE.0.) IERROR = 12
- IF (IERROR .NE. 0) RETURN
- DELTAR = (B-A)/M
- DLRSQ = DELTAR**2
- DELTHT = (D-C)/N
- DLTHSQ = DELTHT**2
- NP = NBDCND+1
- C
- C DEFINE A,B,C COEFFICIENTS IN W-ARRAY.
- C
- IWB = M
- IWC = IWB+M
- IWR = IWC+M
- DO 101 I=1,M
- J = IWR+I
- W(J) = A+(I-0.5)*DELTAR
- W(I) = (A+(I-1)*DELTAR)/(DLRSQ*W(J))
- K = IWC+I
- W(K) = (A+I*DELTAR)/(DLRSQ*W(J))
- K = IWB+I
- W(K) = ELMBDA/W(J)**2-2./DLRSQ
- 101 CONTINUE
- C
- C ENTER BOUNDARY DATA FOR R-BOUNDARIES.
- C
- GO TO (102,102,104,104,106,106),MBDCND
- 102 A1 = 2.*W(1)
- W(IWB+1) = W(IWB+1)-W(1)
- DO 103 J=1,N
- F(1,J) = F(1,J)-A1*BDA(J)
- 103 CONTINUE
- GO TO 106
- 104 A1 = DELTAR*W(1)
- W(IWB+1) = W(IWB+1)+W(1)
- DO 105 J=1,N
- F(1,J) = F(1,J)+A1*BDA(J)
- 105 CONTINUE
- 106 CONTINUE
- GO TO (107,109,109,107,107,109),MBDCND
- 107 W(IWC) = W(IWC)-W(IWR)
- A1 = 2.*W(IWR)
- DO 108 J=1,N
- F(M,J) = F(M,J)-A1*BDB(J)
- 108 CONTINUE
- GO TO 111
- 109 W(IWC) = W(IWC)+W(IWR)
- A1 = DELTAR*W(IWR)
- DO 110 J=1,N
- F(M,J) = F(M,J)-A1*BDB(J)
- 110 CONTINUE
- C
- C ENTER BOUNDARY DATA FOR THETA-BOUNDARIES.
- C
- 111 A1 = 2./DLTHSQ
- GO TO (121,112,112,114,114),NP
- 112 DO 113 I=1,M
- F(I,1) = F(I,1)-A1*BDC(I)
- 113 CONTINUE
- GO TO 116
- 114 A1 = 1./DELTHT
- DO 115 I=1,M
- F(I,1) = F(I,1)+A1*BDC(I)
- 115 CONTINUE
- 116 A1 = 2./DLTHSQ
- GO TO (121,117,119,119,117),NP
- 117 DO 118 I=1,M
- F(I,N) = F(I,N)-A1*BDD(I)
- 118 CONTINUE
- GO TO 121
- 119 A1 = 1./DELTHT
- DO 120 I=1,M
- F(I,N) = F(I,N)-A1*BDD(I)
- 120 CONTINUE
- 121 CONTINUE
- C
- C ADJUST RIGHT SIDE OF SINGULAR PROBLEMS TO INSURE EXISTENCE OF A
- C SOLUTION.
- C
- PERTRB = 0.
- IF (ELMBDA) 130,123,122
- 122 IERROR = 11
- GO TO 130
- 123 GO TO (130,130,124,130,130,124),MBDCND
- 124 GO TO (125,130,130,125,130),NP
- 125 CONTINUE
- DO 127 I=1,M
- A1 = 0.
- DO 126 J=1,N
- A1 = A1+F(I,J)
- 126 CONTINUE
- J = IWR+I
- PERTRB = PERTRB+A1*W(J)
- 127 CONTINUE
- PERTRB = PERTRB/(M*N*0.5*(A+B))
- DO 129 I=1,M
- DO 128 J=1,N
- F(I,J) = F(I,J)-PERTRB
- 128 CONTINUE
- 129 CONTINUE
- 130 CONTINUE
- C
- C MULTIPLY I-TH EQUATION THROUGH BY DELTHT**2
- C
- DO 132 I=1,M
- W(I) = W(I)*DLTHSQ
- J = IWC+I
- W(J) = W(J)*DLTHSQ
- J = IWB+I
- W(J) = W(J)*DLTHSQ
- DO 131 J=1,N
- F(I,J) = F(I,J)*DLTHSQ
- 131 CONTINUE
- 132 CONTINUE
- LP = NBDCND
- W(1) = 0.
- W(IWR) = 0.
- C
- C CALL GENBUN TO SOLVE THE SYSTEM OF EQUATIONS.
- C
- IF (NBDCND .EQ. 0) GO TO 133
- CALL POISTG (LP,N,1,M,W,W(IWB+1),W(IWC+1),IDIMF,F,IERR1,W(IWR+1))
- GO TO 134
- 133 CALL GENBUN (LP,N,1,M,W,W(IWB+1),W(IWC+1),IDIMF,F,IERR1,W(IWR+1))
- 134 CONTINUE
- W(1) = W(IWR+1)+3*M
- RETURN
- END
|