123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- *DECK HTRIBK
- SUBROUTINE HTRIBK (NM, N, AR, AI, TAU, M, ZR, ZI)
- C***BEGIN PROLOGUE HTRIBK
- C***PURPOSE Form the eigenvectors of a complex Hermitian matrix from
- C the eigenvectors of a real symmetric tridiagonal matrix
- C output from HTRIDI.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C4
- C***TYPE SINGLE PRECISION (HTRIBK-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of a complex analogue of
- C the ALGOL procedure TRBAK1, NUM. MATH. 11, 181-195(1968)
- C by Martin, Reinsch, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
- C
- C This subroutine forms the eigenvectors of a COMPLEX HERMITIAN
- C matrix by back transforming those of the corresponding
- C real symmetric tridiagonal matrix determined by HTRIDI.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameters, AR, AI, ZR, and ZI, as declared in the
- C calling program dimension statement. NM is an INTEGER
- C variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C AR and AI contain some information about the unitary
- C transformations used in the reduction by HTRIDI in the
- C strict lower triangle of AR and the full lower triangle of
- C AI. The remaining upper parts of the matrices are arbitrary.
- C AR and AI are two-dimensional REAL arrays, dimensioned
- C AR(NM,N) and AI(NM,N).
- C
- C TAU contains further information about the transformations.
- C TAU is a one-dimensional REAL array, dimensioned TAU(2,N).
- C
- C M is the number of eigenvectors to be back transformed.
- C M is an INTEGER variable.
- C
- C ZR contains the eigenvectors to be back transformed in its first
- C M columns. The contents of ZI are immaterial. ZR and ZI are
- C two-dimensional REAL arrays, dimensioned ZR(NM,M) and
- C ZI(NM,M).
- C
- C On OUTPUT
- C
- C ZR and ZI contain the real and imaginary parts, respectively,
- C of the transformed eigenvectors in their first M columns.
- C
- C Note that the last component of each returned vector
- C is real and that vector Euclidean norms are preserved.
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HTRIBK
- C
- INTEGER I,J,K,L,M,N,NM
- REAL AR(NM,*),AI(NM,*),TAU(2,*),ZR(NM,*),ZI(NM,*)
- REAL H,S,SI
- C
- C***FIRST EXECUTABLE STATEMENT HTRIBK
- IF (M .EQ. 0) GO TO 200
- C .......... TRANSFORM THE EIGENVECTORS OF THE REAL SYMMETRIC
- C TRIDIAGONAL MATRIX TO THOSE OF THE HERMITIAN
- C TRIDIAGONAL MATRIX. ..........
- DO 50 K = 1, N
- C
- DO 50 J = 1, M
- ZI(K,J) = -ZR(K,J) * TAU(2,K)
- ZR(K,J) = ZR(K,J) * TAU(1,K)
- 50 CONTINUE
- C
- IF (N .EQ. 1) GO TO 200
- C .......... RECOVER AND APPLY THE HOUSEHOLDER MATRICES ..........
- DO 140 I = 2, N
- L = I - 1
- H = AI(I,I)
- IF (H .EQ. 0.0E0) GO TO 140
- C
- DO 130 J = 1, M
- S = 0.0E0
- SI = 0.0E0
- C
- DO 110 K = 1, L
- S = S + AR(I,K) * ZR(K,J) - AI(I,K) * ZI(K,J)
- SI = SI + AR(I,K) * ZI(K,J) + AI(I,K) * ZR(K,J)
- 110 CONTINUE
- C .......... DOUBLE DIVISIONS AVOID POSSIBLE UNDERFLOW ..........
- S = (S / H) / H
- SI = (SI / H) / H
- C
- DO 120 K = 1, L
- ZR(K,J) = ZR(K,J) - S * AR(I,K) - SI * AI(I,K)
- ZI(K,J) = ZI(K,J) - SI * AR(I,K) + S * AI(I,K)
- 120 CONTINUE
- C
- 130 CONTINUE
- C
- 140 CONTINUE
- C
- 200 RETURN
- END
|