123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- *DECK HTRID3
- SUBROUTINE HTRID3 (NM, N, A, D, E, E2, TAU)
- C***BEGIN PROLOGUE HTRID3
- C***PURPOSE Reduce a complex Hermitian (packed) matrix to a real
- C symmetric tridiagonal matrix by unitary similarity
- C transformations.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1B1
- C***TYPE SINGLE PRECISION (HTRID3-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of a complex analogue of
- C the ALGOL procedure TRED3, NUM. MATH. 11, 181-195(1968)
- C by Martin, Reinsch, and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
- C
- C This subroutine reduces a COMPLEX HERMITIAN matrix, stored as
- C a single square array, to a real symmetric tridiagonal matrix
- C using unitary similarity transformations.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, A, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C A contains the lower triangle of the complex Hermitian input
- C matrix. The real parts of the matrix elements are stored
- C in the full lower triangle of A, and the imaginary parts
- C are stored in the transposed positions of the strict upper
- C triangle of A. No storage is required for the zero
- C imaginary parts of the diagonal elements. A is a two-
- C dimensional REAL array, dimensioned A(NM,N).
- C
- C On OUTPUT
- C
- C A contains some information about the unitary transformations
- C used in the reduction.
- C
- C D contains the diagonal elements of the real symmetric
- C tridiagonal matrix. D is a one-dimensional REAL array,
- C dimensioned D(N).
- C
- C E contains the subdiagonal elements of the real tridiagonal
- C matrix in its last N-1 positions. E(1) is set to zero.
- C E is a one-dimensional REAL array, dimensioned E(N).
- C
- C E2 contains the squares of the corresponding elements of E.
- C E2(1) is set to zero. E2 may coincide with E if the squares
- C are not needed. E2 is a one-dimensional REAL array,
- C dimensioned E2(N).
- C
- C TAU contains further information about the transformations.
- C TAU is a one-dimensional REAL array, dimensioned TAU(2,N).
- C
- C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED PYTHAG
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HTRID3
- C
- INTEGER I,J,K,L,N,II,NM,JM1,JP1
- REAL A(NM,*),D(*),E(*),E2(*),TAU(2,*)
- REAL F,G,H,FI,GI,HH,SI,SCALE
- REAL PYTHAG
- C
- C***FIRST EXECUTABLE STATEMENT HTRID3
- TAU(1,N) = 1.0E0
- TAU(2,N) = 0.0E0
- C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
- DO 300 II = 1, N
- I = N + 1 - II
- L = I - 1
- H = 0.0E0
- SCALE = 0.0E0
- IF (L .LT. 1) GO TO 130
- C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
- DO 120 K = 1, L
- 120 SCALE = SCALE + ABS(A(I,K)) + ABS(A(K,I))
- C
- IF (SCALE .NE. 0.0E0) GO TO 140
- TAU(1,L) = 1.0E0
- TAU(2,L) = 0.0E0
- 130 E(I) = 0.0E0
- E2(I) = 0.0E0
- GO TO 290
- C
- 140 DO 150 K = 1, L
- A(I,K) = A(I,K) / SCALE
- A(K,I) = A(K,I) / SCALE
- H = H + A(I,K) * A(I,K) + A(K,I) * A(K,I)
- 150 CONTINUE
- C
- E2(I) = SCALE * SCALE * H
- G = SQRT(H)
- E(I) = SCALE * G
- F = PYTHAG(A(I,L),A(L,I))
- C .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T ..........
- IF (F .EQ. 0.0E0) GO TO 160
- TAU(1,L) = (A(L,I) * TAU(2,I) - A(I,L) * TAU(1,I)) / F
- SI = (A(I,L) * TAU(2,I) + A(L,I) * TAU(1,I)) / F
- H = H + F * G
- G = 1.0E0 + G / F
- A(I,L) = G * A(I,L)
- A(L,I) = G * A(L,I)
- IF (L .EQ. 1) GO TO 270
- GO TO 170
- 160 TAU(1,L) = -TAU(1,I)
- SI = TAU(2,I)
- A(I,L) = G
- 170 F = 0.0E0
- C
- DO 240 J = 1, L
- G = 0.0E0
- GI = 0.0E0
- IF (J .EQ. 1) GO TO 190
- JM1 = J - 1
- C .......... FORM ELEMENT OF A*U ..........
- DO 180 K = 1, JM1
- G = G + A(J,K) * A(I,K) + A(K,J) * A(K,I)
- GI = GI - A(J,K) * A(K,I) + A(K,J) * A(I,K)
- 180 CONTINUE
- C
- 190 G = G + A(J,J) * A(I,J)
- GI = GI - A(J,J) * A(J,I)
- JP1 = J + 1
- IF (L .LT. JP1) GO TO 220
- C
- DO 200 K = JP1, L
- G = G + A(K,J) * A(I,K) - A(J,K) * A(K,I)
- GI = GI - A(K,J) * A(K,I) - A(J,K) * A(I,K)
- 200 CONTINUE
- C .......... FORM ELEMENT OF P ..........
- 220 E(J) = G / H
- TAU(2,J) = GI / H
- F = F + E(J) * A(I,J) - TAU(2,J) * A(J,I)
- 240 CONTINUE
- C
- HH = F / (H + H)
- C .......... FORM REDUCED A ..........
- DO 260 J = 1, L
- F = A(I,J)
- G = E(J) - HH * F
- E(J) = G
- FI = -A(J,I)
- GI = TAU(2,J) - HH * FI
- TAU(2,J) = -GI
- A(J,J) = A(J,J) - 2.0E0 * (F * G + FI * GI)
- IF (J .EQ. 1) GO TO 260
- JM1 = J - 1
- C
- DO 250 K = 1, JM1
- A(J,K) = A(J,K) - F * E(K) - G * A(I,K)
- 1 + FI * TAU(2,K) + GI * A(K,I)
- A(K,J) = A(K,J) - F * TAU(2,K) - G * A(K,I)
- 1 - FI * E(K) - GI * A(I,K)
- 250 CONTINUE
- C
- 260 CONTINUE
- C
- 270 DO 280 K = 1, L
- A(I,K) = SCALE * A(I,K)
- A(K,I) = SCALE * A(K,I)
- 280 CONTINUE
- C
- TAU(2,L) = -SI
- 290 D(I) = A(I,I)
- A(I,I) = SCALE * SQRT(H)
- 300 CONTINUE
- C
- RETURN
- END
|