htridi.f 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. *DECK HTRIDI
  2. SUBROUTINE HTRIDI (NM, N, AR, AI, D, E, E2, TAU)
  3. C***BEGIN PROLOGUE HTRIDI
  4. C***PURPOSE Reduce a complex Hermitian matrix to a real symmetric
  5. C tridiagonal matrix using unitary similarity
  6. C transformations.
  7. C***LIBRARY SLATEC (EISPACK)
  8. C***CATEGORY D4C1B1
  9. C***TYPE SINGLE PRECISION (HTRIDI-S)
  10. C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
  11. C***AUTHOR Smith, B. T., et al.
  12. C***DESCRIPTION
  13. C
  14. C This subroutine is a translation of a complex analogue of
  15. C the ALGOL procedure TRED1, NUM. MATH. 11, 181-195(1968)
  16. C by Martin, Reinsch, and Wilkinson.
  17. C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
  18. C
  19. C This subroutine reduces a COMPLEX HERMITIAN matrix
  20. C to a real symmetric tridiagonal matrix using
  21. C unitary similarity transformations.
  22. C
  23. C On INPUT
  24. C
  25. C NM must be set to the row dimension of the two-dimensional
  26. C array parameters, AR and AI, as declared in the calling
  27. C program dimension statement. NM is an INTEGER variable.
  28. C
  29. C N is the order of the matrix A=(AR,AI). N is an INTEGER
  30. C variable. N must be less than or equal to NM.
  31. C
  32. C AR and AI contain the real and imaginary parts, respectively,
  33. C of the complex Hermitian input matrix. Only the lower
  34. C triangle of the matrix need be supplied. AR and AI are two-
  35. C dimensional REAL arrays, dimensioned AR(NM,N) and AI(NM,N).
  36. C
  37. C On OUTPUT
  38. C
  39. C AR and AI contain some information about the unitary trans-
  40. C formations used in the reduction in the strict lower triangle
  41. C of AR and the full lower triangle of AI. The rest of the
  42. C matrices are unaltered.
  43. C
  44. C D contains the diagonal elements of the real symmetric
  45. C tridiagonal matrix. D is a one-dimensional REAL array,
  46. C dimensioned D(N).
  47. C
  48. C E contains the subdiagonal elements of the real tridiagonal
  49. C matrix in its last N-1 positions. E(1) is set to zero.
  50. C E is a one-dimensional REAL array, dimensioned E(N).
  51. C
  52. C E2 contains the squares of the corresponding elements of E.
  53. C E2(1) is set to zero. E2 may coincide with E if the squares
  54. C are not needed. E2 is a one-dimensional REAL array,
  55. C dimensioned E2(N).
  56. C
  57. C TAU contains further information about the transformations.
  58. C TAU is a one-dimensional REAL array, dimensioned TAU(2,N).
  59. C
  60. C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
  61. C
  62. C Questions and comments should be directed to B. S. Garbow,
  63. C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
  64. C ------------------------------------------------------------------
  65. C
  66. C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
  67. C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
  68. C system Routines - EISPACK Guide, Springer-Verlag,
  69. C 1976.
  70. C***ROUTINES CALLED PYTHAG
  71. C***REVISION HISTORY (YYMMDD)
  72. C 760101 DATE WRITTEN
  73. C 890831 Modified array declarations. (WRB)
  74. C 890831 REVISION DATE from Version 3.2
  75. C 891214 Prologue converted to Version 4.0 format. (BAB)
  76. C 920501 Reformatted the REFERENCES section. (WRB)
  77. C***END PROLOGUE HTRIDI
  78. C
  79. INTEGER I,J,K,L,N,II,NM,JP1
  80. REAL AR(NM,*),AI(NM,*),D(*),E(*),E2(*),TAU(2,*)
  81. REAL F,G,H,FI,GI,HH,SI,SCALE
  82. REAL PYTHAG
  83. C
  84. C***FIRST EXECUTABLE STATEMENT HTRIDI
  85. TAU(1,N) = 1.0E0
  86. TAU(2,N) = 0.0E0
  87. C
  88. DO 100 I = 1, N
  89. 100 D(I) = AR(I,I)
  90. C .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
  91. DO 300 II = 1, N
  92. I = N + 1 - II
  93. L = I - 1
  94. H = 0.0E0
  95. SCALE = 0.0E0
  96. IF (L .LT. 1) GO TO 130
  97. C .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
  98. DO 120 K = 1, L
  99. 120 SCALE = SCALE + ABS(AR(I,K)) + ABS(AI(I,K))
  100. C
  101. IF (SCALE .NE. 0.0E0) GO TO 140
  102. TAU(1,L) = 1.0E0
  103. TAU(2,L) = 0.0E0
  104. 130 E(I) = 0.0E0
  105. E2(I) = 0.0E0
  106. GO TO 290
  107. C
  108. 140 DO 150 K = 1, L
  109. AR(I,K) = AR(I,K) / SCALE
  110. AI(I,K) = AI(I,K) / SCALE
  111. H = H + AR(I,K) * AR(I,K) + AI(I,K) * AI(I,K)
  112. 150 CONTINUE
  113. C
  114. E2(I) = SCALE * SCALE * H
  115. G = SQRT(H)
  116. E(I) = SCALE * G
  117. F = PYTHAG(AR(I,L),AI(I,L))
  118. C .......... FORM NEXT DIAGONAL ELEMENT OF MATRIX T ..........
  119. IF (F .EQ. 0.0E0) GO TO 160
  120. TAU(1,L) = (AI(I,L) * TAU(2,I) - AR(I,L) * TAU(1,I)) / F
  121. SI = (AR(I,L) * TAU(2,I) + AI(I,L) * TAU(1,I)) / F
  122. H = H + F * G
  123. G = 1.0E0 + G / F
  124. AR(I,L) = G * AR(I,L)
  125. AI(I,L) = G * AI(I,L)
  126. IF (L .EQ. 1) GO TO 270
  127. GO TO 170
  128. 160 TAU(1,L) = -TAU(1,I)
  129. SI = TAU(2,I)
  130. AR(I,L) = G
  131. 170 F = 0.0E0
  132. C
  133. DO 240 J = 1, L
  134. G = 0.0E0
  135. GI = 0.0E0
  136. C .......... FORM ELEMENT OF A*U ..........
  137. DO 180 K = 1, J
  138. G = G + AR(J,K) * AR(I,K) + AI(J,K) * AI(I,K)
  139. GI = GI - AR(J,K) * AI(I,K) + AI(J,K) * AR(I,K)
  140. 180 CONTINUE
  141. C
  142. JP1 = J + 1
  143. IF (L .LT. JP1) GO TO 220
  144. C
  145. DO 200 K = JP1, L
  146. G = G + AR(K,J) * AR(I,K) - AI(K,J) * AI(I,K)
  147. GI = GI - AR(K,J) * AI(I,K) - AI(K,J) * AR(I,K)
  148. 200 CONTINUE
  149. C .......... FORM ELEMENT OF P ..........
  150. 220 E(J) = G / H
  151. TAU(2,J) = GI / H
  152. F = F + E(J) * AR(I,J) - TAU(2,J) * AI(I,J)
  153. 240 CONTINUE
  154. C
  155. HH = F / (H + H)
  156. C .......... FORM REDUCED A ..........
  157. DO 260 J = 1, L
  158. F = AR(I,J)
  159. G = E(J) - HH * F
  160. E(J) = G
  161. FI = -AI(I,J)
  162. GI = TAU(2,J) - HH * FI
  163. TAU(2,J) = -GI
  164. C
  165. DO 260 K = 1, J
  166. AR(J,K) = AR(J,K) - F * E(K) - G * AR(I,K)
  167. 1 + FI * TAU(2,K) + GI * AI(I,K)
  168. AI(J,K) = AI(J,K) - F * TAU(2,K) - G * AI(I,K)
  169. 1 - FI * E(K) - GI * AR(I,K)
  170. 260 CONTINUE
  171. C
  172. 270 DO 280 K = 1, L
  173. AR(I,K) = SCALE * AR(I,K)
  174. AI(I,K) = SCALE * AI(I,K)
  175. 280 CONTINUE
  176. C
  177. TAU(2,L) = -SI
  178. 290 HH = D(I)
  179. D(I) = AR(I,I)
  180. AR(I,I) = HH
  181. AI(I,I) = SCALE * SQRT(H)
  182. 300 CONTINUE
  183. C
  184. RETURN
  185. END