123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627 |
- *DECK HW3CRT
- SUBROUTINE HW3CRT (XS, XF, L, LBDCND, BDXS, BDXF, YS, YF, M,
- + MBDCND, BDYS, BDYF, ZS, ZF, N, NBDCND, BDZS, BDZF, ELMBDA,
- + LDIMF, MDIMF, F, PERTRB, IERROR, W)
- C***BEGIN PROLOGUE HW3CRT
- C***PURPOSE Solve the standard seven-point finite difference
- C approximation to the Helmholtz equation in Cartesian
- C coordinates.
- C***LIBRARY SLATEC (FISHPACK)
- C***CATEGORY I2B1A1A
- C***TYPE SINGLE PRECISION (HW3CRT-S)
- C***KEYWORDS CARTESIAN, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
- C***AUTHOR Adams, J., (NCAR)
- C Swarztrauber, P. N., (NCAR)
- C Sweet, R., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine HW3CRT solves the standard seven-point finite
- C difference approximation to the Helmholtz equation in Cartesian
- C coordinates:
- C
- C (d/dX)(dU/dX) + (d/dY)(dU/dY) + (d/dZ)(dU/dZ)
- C
- C + LAMBDA*U = F(X,Y,Z) .
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C
- C * * * * * * * * Parameter Description * * * * * * * * * *
- C
- C
- C * * * * * * On Input * * * * * *
- C
- C XS,XF
- C The range of X, i.e. XS .LE. X .LE. XF .
- C XS must be less than XF.
- C
- C L
- C The number of panels into which the interval (XS,XF) is
- C subdivided. Hence, there will be L+1 grid points in the
- C X-direction given by X(I) = XS+(I-1)DX for I=1,2,...,L+1,
- C where DX = (XF-XS)/L is the panel width. L must be at
- C least 5 .
- C
- C LBDCND
- C Indicates the type of boundary conditions at X = XS and X = XF.
- C
- C = 0 If the solution is periodic in X, i.e.
- C U(L+I,J,K) = U(I,J,K).
- C = 1 If the solution is specified at X = XS and X = XF.
- C = 2 If the solution is specified at X = XS and the derivative
- C of the solution with respect to X is specified at X = XF.
- C = 3 If the derivative of the solution with respect to X is
- C specified at X = XS and X = XF.
- C = 4 If the derivative of the solution with respect to X is
- C specified at X = XS and the solution is specified at X=XF.
- C
- C BDXS
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to X at X = XS.
- C when LBDCND = 3 or 4,
- C
- C BDXS(J,K) = (d/dX)U(XS,Y(J),Z(K)), J=1,2,...,M+1,
- C K=1,2,...,N+1.
- C
- C When LBDCND has any other value, BDXS is a dummy variable.
- C BDXS must be dimensioned at least (M+1)*(N+1).
- C
- C BDXF
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to X at X = XF.
- C When LBDCND = 2 or 3,
- C
- C BDXF(J,K) = (d/dX)U(XF,Y(J),Z(K)), J=1,2,...,M+1,
- C K=1,2,...,N+1.
- C
- C When LBDCND has any other value, BDXF is a dummy variable.
- C BDXF must be dimensioned at least (M+1)*(N+1).
- C
- C YS,YF
- C The range of Y, i.e. YS .LE. Y .LE. YF.
- C YS must be less than YF.
- C
- C M
- C The number of panels into which the interval (YS,YF) is
- C subdivided. Hence, there will be M+1 grid points in the
- C Y-direction given by Y(J) = YS+(J-1)DY for J=1,2,...,M+1,
- C where DY = (YF-YS)/M is the panel width. M must be at
- C least 5 .
- C
- C MBDCND
- C Indicates the type of boundary conditions at Y = YS and Y = YF.
- C
- C = 0 If the solution is periodic in Y, i.e.
- C U(I,M+J,K) = U(I,J,K).
- C = 1 If the solution is specified at Y = YS and Y = YF.
- C = 2 If the solution is specified at Y = YS and the derivative
- C of the solution with respect to Y is specified at Y = YF.
- C = 3 If the derivative of the solution with respect to Y is
- C specified at Y = YS and Y = YF.
- C = 4 If the derivative of the solution with respect to Y is
- C specified at Y = YS and the solution is specified at Y=YF.
- C
- C BDYS
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to Y at Y = YS.
- C When MBDCND = 3 or 4,
- C
- C BDYS(I,K) = (d/dY)U(X(I),YS,Z(K)), I=1,2,...,L+1,
- C K=1,2,...,N+1.
- C
- C When MBDCND has any other value, BDYS is a dummy variable.
- C BDYS must be dimensioned at least (L+1)*(N+1).
- C
- C BDYF
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to Y at Y = YF.
- C When MBDCND = 2 or 3,
- C
- C BDYF(I,K) = (d/dY)U(X(I),YF,Z(K)), I=1,2,...,L+1,
- C K=1,2,...,N+1.
- C
- C When MBDCND has any other value, BDYF is a dummy variable.
- C BDYF must be dimensioned at least (L+1)*(N+1).
- C
- C ZS,ZF
- C The range of Z, i.e. ZS .LE. Z .LE. ZF.
- C ZS must be less than ZF.
- C
- C N
- C The number of panels into which the interval (ZS,ZF) is
- C subdivided. Hence, there will be N+1 grid points in the
- C Z-direction given by Z(K) = ZS+(K-1)DZ for K=1,2,...,N+1,
- C where DZ = (ZF-ZS)/N is the panel width. N must be at least 5.
- C
- C NBDCND
- C Indicates the type of boundary conditions at Z = ZS and Z = ZF.
- C
- C = 0 If the solution is periodic in Z, i.e.
- C U(I,J,N+K) = U(I,J,K).
- C = 1 If the solution is specified at Z = ZS and Z = ZF.
- C = 2 If the solution is specified at Z = ZS and the derivative
- C of the solution with respect to Z is specified at Z = ZF.
- C = 3 If the derivative of the solution with respect to Z is
- C specified at Z = ZS and Z = ZF.
- C = 4 If the derivative of the solution with respect to Z is
- C specified at Z = ZS and the solution is specified at Z=ZF.
- C
- C BDZS
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to Z at Z = ZS.
- C When NBDCND = 3 or 4,
- C
- C BDZS(I,J) = (d/dZ)U(X(I),Y(J),ZS), I=1,2,...,L+1,
- C J=1,2,...,M+1.
- C
- C When NBDCND has any other value, BDZS is a dummy variable.
- C BDZS must be dimensioned at least (L+1)*(M+1).
- C
- C BDZF
- C A two-dimensional array that specifies the values of the
- C derivative of the solution with respect to Z at Z = ZF.
- C When NBDCND = 2 or 3,
- C
- C BDZF(I,J) = (d/dZ)U(X(I),Y(J),ZF), I=1,2,...,L+1,
- C J=1,2,...,M+1.
- C
- C When NBDCND has any other value, BDZF is a dummy variable.
- C BDZF must be dimensioned at least (L+1)*(M+1).
- C
- C ELMBDA
- C The constant LAMBDA in the Helmholtz equation. If
- C LAMBDA .GT. 0, a solution may not exist. However, HW3CRT will
- C attempt to find a solution.
- C
- C F
- C A three-dimensional array that specifies the values of the
- C right side of the Helmholtz equation and boundary values (if
- C any). For I=2,3,...,L, J=2,3,...,M, and K=2,3,...,N
- C
- C F(I,J,K) = F(X(I),Y(J),Z(K)).
- C
- C On the boundaries F is defined by
- C
- C LBDCND F(1,J,K) F(L+1,J,K)
- C ------ --------------- ---------------
- C
- C 0 F(XS,Y(J),Z(K)) F(XS,Y(J),Z(K))
- C 1 U(XS,Y(J),Z(K)) U(XF,Y(J),Z(K))
- C 2 U(XS,Y(J),Z(K)) F(XF,Y(J),Z(K)) J=1,2,...,M+1
- C 3 F(XS,Y(J),Z(K)) F(XF,Y(J),Z(K)) K=1,2,...,N+1
- C 4 F(XS,Y(J),Z(K)) U(XF,Y(J),Z(K))
- C
- C MBDCND F(I,1,K) F(I,M+1,K)
- C ------ --------------- ---------------
- C
- C 0 F(X(I),YS,Z(K)) F(X(I),YS,Z(K))
- C 1 U(X(I),YS,Z(K)) U(X(I),YF,Z(K))
- C 2 U(X(I),YS,Z(K)) F(X(I),YF,Z(K)) I=1,2,...,L+1
- C 3 F(X(I),YS,Z(K)) F(X(I),YF,Z(K)) K=1,2,...,N+1
- C 4 F(X(I),YS,Z(K)) U(X(I),YF,Z(K))
- C
- C NBDCND F(I,J,1) F(I,J,N+1)
- C ------ --------------- ---------------
- C
- C 0 F(X(I),Y(J),ZS) F(X(I),Y(J),ZS)
- C 1 U(X(I),Y(J),ZS) U(X(I),Y(J),ZF)
- C 2 U(X(I),Y(J),ZS) F(X(I),Y(J),ZF) I=1,2,...,L+1
- C 3 F(X(I),Y(J),ZS) F(X(I),Y(J),ZF) J=1,2,...,M+1
- C 4 F(X(I),Y(J),ZS) U(X(I),Y(J),ZF)
- C
- C F must be dimensioned at least (L+1)*(M+1)*(N+1).
- C
- C NOTE:
- C
- C If the table calls for both the solution U and the right side F
- C on a boundary, then the solution must be specified.
- C
- C LDIMF
- C The row (or first) dimension of the arrays F,BDYS,BDYF,BDZS,
- C and BDZF as it appears in the program calling HW3CRT. this
- C parameter is used to specify the variable dimension of these
- C arrays. LDIMF must be at least L+1.
- C
- C MDIMF
- C The column (or second) dimension of the array F and the row (or
- C first) dimension of the arrays BDXS and BDXF as it appears in
- C the program calling HW3CRT. This parameter is used to specify
- C the variable dimension of these arrays.
- C MDIMF must be at least M+1.
- C
- C W
- C A one-dimensional array that must be provided by the user for
- C work space. The length of W must be at least 30 + L + M + 5*N
- C + MAX(L,M,N) + 7*(INT((L+1)/2) + INT((M+1)/2))
- C
- C
- C * * * * * * On Output * * * * * *
- C
- C F
- C Contains the solution U(I,J,K) of the finite difference
- C approximation for the grid point (X(I),Y(J),Z(K)) for
- C I=1,2,...,L+1, J=1,2,...,M+1, and K=1,2,...,N+1.
- C
- C PERTRB
- C If a combination of periodic or derivative boundary conditions
- C is specified for a Poisson equation (LAMBDA = 0), a solution
- C may not exist. PERTRB is a constant, calculated and subtracted
- C from F, which ensures that a solution exists. PWSCRT then
- C computes this solution, which is a least squares solution to
- C the original approximation. This solution is not unique and is
- C unnormalized. The value of PERTRB should be small compared to
- C the right side F. Otherwise, a solution is obtained to an
- C essentially different problem. This comparison should always
- C be made to insure that a meaningful solution has been obtained.
- C
- C IERROR
- C An error flag that indicates invalid input parameters. Except
- C for numbers 0 and 12, a solution is not attempted.
- C
- C = 0 No error
- C = 1 XS .GE. XF
- C = 2 L .LT. 5
- C = 3 LBDCND .LT. 0 .OR. LBDCND .GT. 4
- C = 4 YS .GE. YF
- C = 5 M .LT. 5
- C = 6 MBDCND .LT. 0 .OR. MBDCND .GT. 4
- C = 7 ZS .GE. ZF
- C = 8 N .LT. 5
- C = 9 NBDCND .LT. 0 .OR. NBDCND .GT. 4
- C = 10 LDIMF .LT. L+1
- C = 11 MDIMF .LT. M+1
- C = 12 LAMBDA .GT. 0
- C
- C Since this is the only means of indicating a possibly incorrect
- C call to HW3CRT, the user should test IERROR after the call.
- C
- C *Long Description:
- C
- C * * * * * * * Program Specifications * * * * * * * * * * * *
- C
- C Dimension of BDXS(MDIMF,N+1),BDXF(MDIMF,N+1),BDYS(LDIMF,N+1),
- C Arguments BDYF(LDIMF,N+1),BDZS(LDIMF,M+1),BDZF(LDIMF,M+1),
- C F(LDIMF,MDIMF,N+1),W(see argument list)
- C
- C Latest December 1, 1978
- C Revision
- C
- C Subprograms HW3CRT,POIS3D,POS3D1,TRIDQ,RFFTI,RFFTF,RFFTF1,
- C Required RFFTB,RFFTB1,COSTI,COST,SINTI,SINT,COSQI,COSQF,
- C COSQF1,COSQB,COSQB1,SINQI,SINQF,SINQB,CFFTI,
- C CFFTI1,CFFTB,CFFTB1,PASSB2,PASSB3,PASSB4,PASSB,
- C CFFTF,CFFTF1,PASSF1,PASSF2,PASSF3,PASSF4,PASSF,
- C PIMACH
- C
- C Special NONE
- C Conditions
- C
- C Common NONE
- C Blocks
- C
- C I/O NONE
- C
- C Precision Single
- C
- C Specialist Roland Sweet
- C
- C Language FORTRAN
- C
- C History Written by Roland Sweet at NCAR in July 1977
- C
- C Algorithm This subroutine defines the finite difference
- C equations, incorporates boundary data, and
- C adjusts the right side of singular systems and
- C then calls POIS3D to solve the system.
- C
- C Space 7862(decimal) = 17300(octal) locations on the
- C Required NCAR Control Data 7600
- C
- C Timing and The execution time T on the NCAR Control Data
- C Accuracy 7600 for subroutine HW3CRT is roughly proportional
- C to L*M*N*(log2(L)+log2(M)+5), but also depends on
- C input parameters LBDCND and MBDCND. Some typical
- C values are listed in the table below.
- C The solution process employed results in a loss
- C of no more than three significant digits for L,M
- C and N as large as 32. More detailed information
- C about accuracy can be found in the documentation
- C for subroutine POIS3D which is the routine that
- C actually solves the finite difference equations.
- C
- C
- C L(=M=N) LBDCND(=MBDCND=NBDCND) T(MSECS)
- C ------- ---------------------- --------
- C
- C 16 0 300
- C 16 1 302
- C 16 3 348
- C 32 0 1925
- C 32 1 1929
- C 32 3 2109
- C
- C Portability American National Standards Institute FORTRAN.
- C The machine dependent constant PI is defined in
- C function PIMACH.
- C
- C Required COS,SIN,ATAN
- C Resident
- C Routines
- C
- C Reference NONE
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED POIS3D
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE HW3CRT
- C
- C
- DIMENSION BDXS(MDIMF,*) ,BDXF(MDIMF,*) ,
- 1 BDYS(LDIMF,*) ,BDYF(LDIMF,*) ,
- 2 BDZS(LDIMF,*) ,BDZF(LDIMF,*) ,
- 3 F(LDIMF,MDIMF,*) ,W(*)
- C***FIRST EXECUTABLE STATEMENT HW3CRT
- IERROR = 0
- IF (XF .LE. XS) IERROR = 1
- IF (L .LT. 5) IERROR = 2
- IF (LBDCND.LT.0 .OR. LBDCND.GT.4) IERROR = 3
- IF (YF .LE. YS) IERROR = 4
- IF (M .LT. 5) IERROR = 5
- IF (MBDCND.LT.0 .OR. MBDCND.GT.4) IERROR = 6
- IF (ZF .LE. ZS) IERROR = 7
- IF (N .LT. 5) IERROR = 8
- IF (NBDCND.LT.0 .OR. NBDCND.GT.4) IERROR = 9
- IF (LDIMF .LT. L+1) IERROR = 10
- IF (MDIMF .LT. M+1) IERROR = 11
- IF (IERROR .NE. 0) GO TO 188
- DY = (YF-YS)/M
- TWBYDY = 2./DY
- C2 = 1./(DY**2)
- MSTART = 1
- MSTOP = M
- MP1 = M+1
- MP = MBDCND+1
- GO TO (104,101,101,102,102),MP
- 101 MSTART = 2
- 102 GO TO (104,104,103,103,104),MP
- 103 MSTOP = MP1
- 104 MUNK = MSTOP-MSTART+1
- DZ = (ZF-ZS)/N
- TWBYDZ = 2./DZ
- NP = NBDCND+1
- C3 = 1./(DZ**2)
- NP1 = N+1
- NSTART = 1
- NSTOP = N
- GO TO (108,105,105,106,106),NP
- 105 NSTART = 2
- 106 GO TO (108,108,107,107,108),NP
- 107 NSTOP = NP1
- 108 NUNK = NSTOP-NSTART+1
- LP1 = L+1
- DX = (XF-XS)/L
- C1 = 1./(DX**2)
- TWBYDX = 2./DX
- LP = LBDCND+1
- LSTART = 1
- LSTOP = L
- C
- C ENTER BOUNDARY DATA FOR X-BOUNDARIES.
- C
- GO TO (122,109,109,112,112),LP
- 109 LSTART = 2
- DO 111 J=MSTART,MSTOP
- DO 110 K=NSTART,NSTOP
- F(2,J,K) = F(2,J,K)-C1*F(1,J,K)
- 110 CONTINUE
- 111 CONTINUE
- GO TO 115
- 112 DO 114 J=MSTART,MSTOP
- DO 113 K=NSTART,NSTOP
- F(1,J,K) = F(1,J,K)+TWBYDX*BDXS(J,K)
- 113 CONTINUE
- 114 CONTINUE
- 115 GO TO (122,116,119,119,116),LP
- 116 DO 118 J=MSTART,MSTOP
- DO 117 K=NSTART,NSTOP
- F(L,J,K) = F(L,J,K)-C1*F(LP1,J,K)
- 117 CONTINUE
- 118 CONTINUE
- GO TO 122
- 119 LSTOP = LP1
- DO 121 J=MSTART,MSTOP
- DO 120 K=NSTART,NSTOP
- F(LP1,J,K) = F(LP1,J,K)-TWBYDX*BDXF(J,K)
- 120 CONTINUE
- 121 CONTINUE
- 122 LUNK = LSTOP-LSTART+1
- C
- C ENTER BOUNDARY DATA FOR Y-BOUNDARIES.
- C
- GO TO (136,123,123,126,126),MP
- 123 DO 125 I=LSTART,LSTOP
- DO 124 K=NSTART,NSTOP
- F(I,2,K) = F(I,2,K)-C2*F(I,1,K)
- 124 CONTINUE
- 125 CONTINUE
- GO TO 129
- 126 DO 128 I=LSTART,LSTOP
- DO 127 K=NSTART,NSTOP
- F(I,1,K) = F(I,1,K)+TWBYDY*BDYS(I,K)
- 127 CONTINUE
- 128 CONTINUE
- 129 GO TO (136,130,133,133,130),MP
- 130 DO 132 I=LSTART,LSTOP
- DO 131 K=NSTART,NSTOP
- F(I,M,K) = F(I,M,K)-C2*F(I,MP1,K)
- 131 CONTINUE
- 132 CONTINUE
- GO TO 136
- 133 DO 135 I=LSTART,LSTOP
- DO 134 K=NSTART,NSTOP
- F(I,MP1,K) = F(I,MP1,K)-TWBYDY*BDYF(I,K)
- 134 CONTINUE
- 135 CONTINUE
- 136 CONTINUE
- C
- C ENTER BOUNDARY DATA FOR Z-BOUNDARIES.
- C
- GO TO (150,137,137,140,140),NP
- 137 DO 139 I=LSTART,LSTOP
- DO 138 J=MSTART,MSTOP
- F(I,J,2) = F(I,J,2)-C3*F(I,J,1)
- 138 CONTINUE
- 139 CONTINUE
- GO TO 143
- 140 DO 142 I=LSTART,LSTOP
- DO 141 J=MSTART,MSTOP
- F(I,J,1) = F(I,J,1)+TWBYDZ*BDZS(I,J)
- 141 CONTINUE
- 142 CONTINUE
- 143 GO TO (150,144,147,147,144),NP
- 144 DO 146 I=LSTART,LSTOP
- DO 145 J=MSTART,MSTOP
- F(I,J,N) = F(I,J,N)-C3*F(I,J,NP1)
- 145 CONTINUE
- 146 CONTINUE
- GO TO 150
- 147 DO 149 I=LSTART,LSTOP
- DO 148 J=MSTART,MSTOP
- F(I,J,NP1) = F(I,J,NP1)-TWBYDZ*BDZF(I,J)
- 148 CONTINUE
- 149 CONTINUE
- C
- C DEFINE A,B,C COEFFICIENTS IN W-ARRAY.
- C
- 150 CONTINUE
- IWB = NUNK+1
- IWC = IWB+NUNK
- IWW = IWC+NUNK
- DO 151 K=1,NUNK
- I = IWC+K-1
- W(K) = C3
- W(I) = C3
- I = IWB+K-1
- W(I) = -2.*C3+ELMBDA
- 151 CONTINUE
- GO TO (155,155,153,152,152),NP
- 152 W(IWC) = 2.*C3
- 153 GO TO (155,155,154,154,155),NP
- 154 W(IWB-1) = 2.*C3
- 155 CONTINUE
- PERTRB = 0.
- C
- C FOR SINGULAR PROBLEMS ADJUST DATA TO INSURE A SOLUTION WILL EXIST.
- C
- GO TO (156,172,172,156,172),LP
- 156 GO TO (157,172,172,157,172),MP
- 157 GO TO (158,172,172,158,172),NP
- 158 IF (ELMBDA) 172,160,159
- 159 IERROR = 12
- GO TO 172
- 160 CONTINUE
- MSTPM1 = MSTOP-1
- LSTPM1 = LSTOP-1
- NSTPM1 = NSTOP-1
- XLP = (2+LP)/3
- YLP = (2+MP)/3
- ZLP = (2+NP)/3
- S1 = 0.
- DO 164 K=2,NSTPM1
- DO 162 J=2,MSTPM1
- DO 161 I=2,LSTPM1
- S1 = S1+F(I,J,K)
- 161 CONTINUE
- S1 = S1+(F(1,J,K)+F(LSTOP,J,K))/XLP
- 162 CONTINUE
- S2 = 0.
- DO 163 I=2,LSTPM1
- S2 = S2+F(I,1,K)+F(I,MSTOP,K)
- 163 CONTINUE
- S2 = (S2+(F(1,1,K)+F(1,MSTOP,K)+F(LSTOP,1,K)+F(LSTOP,MSTOP,K))/
- 1 XLP)/YLP
- S1 = S1+S2
- 164 CONTINUE
- S = (F(1,1,1)+F(LSTOP,1,1)+F(1,1,NSTOP)+F(LSTOP,1,NSTOP)+
- 1 F(1,MSTOP,1)+F(LSTOP,MSTOP,1)+F(1,MSTOP,NSTOP)+
- 2 F(LSTOP,MSTOP,NSTOP))/(XLP*YLP)
- DO 166 J=2,MSTPM1
- DO 165 I=2,LSTPM1
- S = S+F(I,J,1)+F(I,J,NSTOP)
- 165 CONTINUE
- 166 CONTINUE
- S2 = 0.
- DO 167 I=2,LSTPM1
- S2 = S2+F(I,1,1)+F(I,1,NSTOP)+F(I,MSTOP,1)+F(I,MSTOP,NSTOP)
- 167 CONTINUE
- S = S2/YLP+S
- S2 = 0.
- DO 168 J=2,MSTPM1
- S2 = S2+F(1,J,1)+F(1,J,NSTOP)+F(LSTOP,J,1)+F(LSTOP,J,NSTOP)
- 168 CONTINUE
- S = S2/XLP+S
- PERTRB = (S/ZLP+S1)/((LUNK+1.-XLP)*(MUNK+1.-YLP)*
- 1 (NUNK+1.-ZLP))
- DO 171 I=1,LUNK
- DO 170 J=1,MUNK
- DO 169 K=1,NUNK
- F(I,J,K) = F(I,J,K)-PERTRB
- 169 CONTINUE
- 170 CONTINUE
- 171 CONTINUE
- 172 CONTINUE
- NPEROD = 0
- IF (NBDCND .EQ. 0) GO TO 173
- NPEROD = 1
- W(1) = 0.
- W(IWW-1) = 0.
- 173 CONTINUE
- CALL POIS3D (LBDCND,LUNK,C1,MBDCND,MUNK,C2,NPEROD,NUNK,W,W(IWB),
- 1 W(IWC),LDIMF,MDIMF,F(LSTART,MSTART,NSTART),IR,W(IWW))
- C
- C FILL IN SIDES FOR PERIODIC BOUNDARY CONDITIONS.
- C
- IF (LP .NE. 1) GO TO 180
- IF (MP .NE. 1) GO TO 175
- DO 174 K=NSTART,NSTOP
- F(1,MP1,K) = F(1,1,K)
- 174 CONTINUE
- MSTOP = MP1
- 175 IF (NP .NE. 1) GO TO 177
- DO 176 J=MSTART,MSTOP
- F(1,J,NP1) = F(1,J,1)
- 176 CONTINUE
- NSTOP = NP1
- 177 DO 179 J=MSTART,MSTOP
- DO 178 K=NSTART,NSTOP
- F(LP1,J,K) = F(1,J,K)
- 178 CONTINUE
- 179 CONTINUE
- 180 CONTINUE
- IF (MP .NE. 1) GO TO 185
- IF (NP .NE. 1) GO TO 182
- DO 181 I=LSTART,LSTOP
- F(I,1,NP1) = F(I,1,1)
- 181 CONTINUE
- NSTOP = NP1
- 182 DO 184 I=LSTART,LSTOP
- DO 183 K=NSTART,NSTOP
- F(I,MP1,K) = F(I,1,K)
- 183 CONTINUE
- 184 CONTINUE
- 185 CONTINUE
- IF (NP .NE. 1) GO TO 188
- DO 187 I=LSTART,LSTOP
- DO 186 J=MSTART,MSTOP
- F(I,J,NP1) = F(I,J,1)
- 186 CONTINUE
- 187 CONTINUE
- 188 CONTINUE
- RETURN
- END
|