123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- *DECK HWSCRT
- SUBROUTINE HWSCRT (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
- + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
- C***BEGIN PROLOGUE HWSCRT
- C***PURPOSE Solves the standard five-point finite difference
- C approximation to the Helmholtz equation in Cartesian
- C coordinates.
- C***LIBRARY SLATEC (FISHPACK)
- C***CATEGORY I2B1A1A
- C***TYPE SINGLE PRECISION (HWSCRT-S)
- C***KEYWORDS CARTESIAN, ELLIPTIC, FISHPACK, HELMHOLTZ, PDE
- C***AUTHOR Adams, J., (NCAR)
- C Swarztrauber, P. N., (NCAR)
- C Sweet, R., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine HWSCRT solves the standard five-point finite
- C difference approximation to the Helmholtz equation in Cartesian
- C coordinates:
- C
- C (d/dX)(dU/dX) + (d/dY)(dU/dY) + LAMBDA*U = F(X,Y).
- C
- C
- C
- C * * * * * * * * Parameter Description * * * * * * * * * *
- C
- C * * * * * * On Input * * * * * *
- C
- C A,B
- C The range of X, i.e., A .LE. X .LE. B. A must be less than B.
- C
- C M
- C The number of panels into which the interval (A,B) is
- C subdivided. Hence, there will be M+1 grid points in the
- C X-direction given by X(I) = A+(I-1)DX for I = 1,2,...,M+1,
- C where DX = (B-A)/M is the panel width. M must be greater than 3.
- C
- C MBDCND
- C Indicates the type of boundary conditions at X = A and X = B.
- C
- C = 0 If the solution is periodic in X, i.e., U(I,J) = U(M+I,J).
- C = 1 If the solution is specified at X = A and X = B.
- C = 2 If the solution is specified at X = A and the derivative of
- C the solution with respect to X is specified at X = B.
- C = 3 If the derivative of the solution with respect to X is
- C specified at X = A and X = B.
- C = 4 If the derivative of the solution with respect to X is
- C specified at X = A and the solution is specified at X = B.
- C
- C BDA
- C A one-dimensional array of length N+1 that specifies the values
- C of the derivative of the solution with respect to X at X = A.
- C When MBDCND = 3 or 4,
- C
- C BDA(J) = (d/dX)U(A,Y(J)), J = 1,2,...,N+1 .
- C
- C When MBDCND has any other value, BDA is a dummy variable.
- C
- C BDB
- C A one-dimensional array of length N+1 that specifies the values
- C of the derivative of the solution with respect to X at X = B.
- C When MBDCND = 2 or 3,
- C
- C BDB(J) = (d/dX)U(B,Y(J)), J = 1,2,...,N+1 .
- C
- C When MBDCND has any other value BDB is a dummy variable.
- C
- C C,D
- C The range of Y, i.e., C .LE. Y .LE. D. C must be less than D.
- C
- C N
- C The number of panels into which the interval (C,D) is
- C subdivided. Hence, there will be N+1 grid points in the
- C Y-direction given by Y(J) = C+(J-1)DY for J = 1,2,...,N+1, where
- C DY = (D-C)/N is the panel width. N must be greater than 3.
- C
- C NBDCND
- C Indicates the type of boundary conditions at Y = C and Y = D.
- C
- C = 0 If the solution is periodic in Y, i.e., U(I,J) = U(I,N+J).
- C = 1 If the solution is specified at Y = C and Y = D.
- C = 2 If the solution is specified at Y = C and the derivative of
- C the solution with respect to Y is specified at Y = D.
- C = 3 If the derivative of the solution with respect to Y is
- C specified at Y = C and Y = D.
- C = 4 If the derivative of the solution with respect to Y is
- C specified at Y = C and the solution is specified at Y = D.
- C
- C BDC
- C A one-dimensional array of length M+1 that specifies the values
- C of the derivative of the solution with respect to Y at Y = C.
- C When NBDCND = 3 or 4,
- C
- C BDC(I) = (d/dY)U(X(I),C), I = 1,2,...,M+1 .
- C
- C When NBDCND has any other value, BDC is a dummy variable.
- C
- C BDD
- C A one-dimensional array of length M+1 that specifies the values
- C of the derivative of the solution with respect to Y at Y = D.
- C When NBDCND = 2 or 3,
- C
- C BDD(I) = (d/dY)U(X(I),D), I = 1,2,...,M+1 .
- C
- C When NBDCND has any other value, BDD is a dummy variable.
- C
- C ELMBDA
- C The constant LAMBDA in the Helmholtz equation. If
- C LAMBDA .GT. 0, a solution may not exist. However, HWSCRT will
- C attempt to find a solution.
- C
- C F
- C A two-dimensional array which specifies the values of the right
- C side of the Helmholtz equation and boundary values (if any).
- C For I = 2,3,...,M and J = 2,3,...,N
- C
- C F(I,J) = F(X(I),Y(J)).
- C
- C On the boundaries F is defined by
- C
- C MBDCND F(1,J) F(M+1,J)
- C ------ --------- --------
- C
- C 0 F(A,Y(J)) F(A,Y(J))
- C 1 U(A,Y(J)) U(B,Y(J))
- C 2 U(A,Y(J)) F(B,Y(J)) J = 1,2,...,N+1
- C 3 F(A,Y(J)) F(B,Y(J))
- C 4 F(A,Y(J)) U(B,Y(J))
- C
- C
- C NBDCND F(I,1) F(I,N+1)
- C ------ --------- --------
- C
- C 0 F(X(I),C) F(X(I),C)
- C 1 U(X(I),C) U(X(I),D)
- C 2 U(X(I),C) F(X(I),D) I = 1,2,...,M+1
- C 3 F(X(I),C) F(X(I),D)
- C 4 F(X(I),C) U(X(I),D)
- C
- C F must be dimensioned at least (M+1)*(N+1).
- C
- C NOTE:
- C
- C If the table calls for both the solution U and the right side F
- C at a corner then the solution must be specified.
- C
- C IDIMF
- C The row (or first) dimension of the array F as it appears in the
- C program calling HWSCRT. This parameter is used to specify the
- C variable dimension of F. IDIMF must be at least M+1 .
- C
- C W
- C A one-dimensional array that must be provided by the user for
- C work space. W may require up to 4*(N+1) +
- C (13 + INT(log2(N+1)))*(M+1) locations. The actual number of
- C locations used is computed by HWSCRT and is returned in location
- C W(1).
- C
- C
- C * * * * * * On Output * * * * * *
- C
- C F
- C Contains the solution U(I,J) of the finite difference
- C approximation for the grid point (X(I),Y(J)), I = 1,2,...,M+1,
- C J = 1,2,...,N+1 .
- C
- C PERTRB
- C If a combination of periodic or derivative boundary conditions
- C is specified for a Poisson equation (LAMBDA = 0), a solution may
- C not exist. PERTRB is a constant, calculated and subtracted from
- C F, which ensures that a solution exists. HWSCRT then computes
- C this solution, which is a least squares solution to the original
- C approximation. This solution plus any constant is also a
- C solution. Hence, the solution is not unique. The value of
- C PERTRB should be small compared to the right side F. Otherwise,
- C a solution is obtained to an essentially different problem.
- C This comparison should always be made to insure that a
- C meaningful solution has been obtained.
- C
- C IERROR
- C An error flag that indicates invalid input parameters. Except
- C for numbers 0 and 6, a solution is not attempted.
- C
- C = 0 No error.
- C = 1 A .GE. B.
- C = 2 MBDCND .LT. 0 or MBDCND .GT. 4 .
- C = 3 C .GE. D.
- C = 4 N .LE. 3
- C = 5 NBDCND .LT. 0 or NBDCND .GT. 4 .
- C = 6 LAMBDA .GT. 0 .
- C = 7 IDIMF .LT. M+1 .
- C = 8 M .LE. 3
- C
- C Since this is the only means of indicating a possibly incorrect
- C call to HWSCRT, the user should test IERROR after the call.
- C
- C W
- C W(1) contains the required length of W.
- C
- C *Long Description:
- C
- C * * * * * * * Program Specifications * * * * * * * * * * * *
- C
- C
- C Dimension of BDA(N+1),BDB(N+1),BDC(M+1),BDD(M+1),F(IDIMF,N+1),
- C Arguments W(see argument list)
- C
- C Latest June 1, 1976
- C Revision
- C
- C Subprograms HWSCRT,GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,
- C Required TRIX,TRI3,PIMACH
- C
- C Special NONE
- C Conditions
- C
- C Common NONE
- C Blocks
- C
- C I/O NONE
- C
- C Precision Single
- C
- C Specialist Roland Sweet
- C
- C Language FORTRAN
- C
- C History Standardized September 1, 1973
- C Revised April 1, 1976
- C
- C Algorithm The routine defines the finite difference
- C equations, incorporates boundary data, and adjusts
- C the right side of singular systems and then calls
- C GENBUN to solve the system.
- C
- C Space 13110(octal) = 5704(decimal) locations on the NCAR
- C Required Control Data 7600
- C
- C Timing and The execution time T on the NCAR Control Data
- C Accuracy 7600 for subroutine HWSCRT is roughly proportional
- C to M*N*log2(N), but also depends on the input
- C parameters NBDCND and MBDCND. Some typical values
- C are listed in the table below.
- C The solution process employed results in a loss
- C of no more than three significant digits for N and
- C M as large as 64. More detailed information about
- C accuracy can be found in the documentation for
- C subroutine GENBUN which is the routine that
- C solves the finite difference equations.
- C
- C
- C M(=N) MBDCND NBDCND T(MSECS)
- C ----- ------ ------ --------
- C
- C 32 0 0 31
- C 32 1 1 23
- C 32 3 3 36
- C 64 0 0 128
- C 64 1 1 96
- C 64 3 3 142
- C
- C Portability American National Standards Institute FORTRAN.
- C The machine dependent constant PI is defined in
- C function PIMACH.
- C
- C Reference Swarztrauber, P. and R. Sweet, 'Efficient FORTRAN
- C Subprograms for The Solution Of Elliptic Equations'
- C NCAR TN/IA-109, July, 1975, 138 pp.
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
- C subprograms for the solution of elliptic equations,
- C NCAR TN/IA-109, July 1975, 138 pp.
- C***ROUTINES CALLED GENBUN
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HWSCRT
- C
- C
- DIMENSION F(IDIMF,*)
- DIMENSION BDA(*) ,BDB(*) ,BDC(*) ,BDD(*) ,
- 1 W(*)
- C***FIRST EXECUTABLE STATEMENT HWSCRT
- IERROR = 0
- IF (A .GE. B) IERROR = 1
- IF (MBDCND.LT.0 .OR. MBDCND.GT.4) IERROR = 2
- IF (C .GE. D) IERROR = 3
- IF (N .LE. 3) IERROR = 4
- IF (NBDCND.LT.0 .OR. NBDCND.GT.4) IERROR = 5
- IF (IDIMF .LT. M+1) IERROR = 7
- IF (M .LE. 3) IERROR = 8
- IF (IERROR .NE. 0) RETURN
- NPEROD = NBDCND
- MPEROD = 0
- IF (MBDCND .GT. 0) MPEROD = 1
- DELTAX = (B-A)/M
- TWDELX = 2./DELTAX
- DELXSQ = 1./DELTAX**2
- DELTAY = (D-C)/N
- TWDELY = 2./DELTAY
- DELYSQ = 1./DELTAY**2
- NP = NBDCND+1
- NP1 = N+1
- MP = MBDCND+1
- MP1 = M+1
- NSTART = 1
- NSTOP = N
- NSKIP = 1
- GO TO (104,101,102,103,104),NP
- 101 NSTART = 2
- GO TO 104
- 102 NSTART = 2
- 103 NSTOP = NP1
- NSKIP = 2
- 104 NUNK = NSTOP-NSTART+1
- C
- C ENTER BOUNDARY DATA FOR X-BOUNDARIES.
- C
- MSTART = 1
- MSTOP = M
- MSKIP = 1
- GO TO (117,105,106,109,110),MP
- 105 MSTART = 2
- GO TO 107
- 106 MSTART = 2
- MSTOP = MP1
- MSKIP = 2
- 107 DO 108 J=NSTART,NSTOP
- F(2,J) = F(2,J)-F(1,J)*DELXSQ
- 108 CONTINUE
- GO TO 112
- 109 MSTOP = MP1
- MSKIP = 2
- 110 DO 111 J=NSTART,NSTOP
- F(1,J) = F(1,J)+BDA(J)*TWDELX
- 111 CONTINUE
- 112 GO TO (113,115),MSKIP
- 113 DO 114 J=NSTART,NSTOP
- F(M,J) = F(M,J)-F(MP1,J)*DELXSQ
- 114 CONTINUE
- GO TO 117
- 115 DO 116 J=NSTART,NSTOP
- F(MP1,J) = F(MP1,J)-BDB(J)*TWDELX
- 116 CONTINUE
- 117 MUNK = MSTOP-MSTART+1
- C
- C ENTER BOUNDARY DATA FOR Y-BOUNDARIES.
- C
- GO TO (127,118,118,120,120),NP
- 118 DO 119 I=MSTART,MSTOP
- F(I,2) = F(I,2)-F(I,1)*DELYSQ
- 119 CONTINUE
- GO TO 122
- 120 DO 121 I=MSTART,MSTOP
- F(I,1) = F(I,1)+BDC(I)*TWDELY
- 121 CONTINUE
- 122 GO TO (123,125),NSKIP
- 123 DO 124 I=MSTART,MSTOP
- F(I,N) = F(I,N)-F(I,NP1)*DELYSQ
- 124 CONTINUE
- GO TO 127
- 125 DO 126 I=MSTART,MSTOP
- F(I,NP1) = F(I,NP1)-BDD(I)*TWDELY
- 126 CONTINUE
- C
- C MULTIPLY RIGHT SIDE BY DELTAY**2.
- C
- 127 DELYSQ = DELTAY*DELTAY
- DO 129 I=MSTART,MSTOP
- DO 128 J=NSTART,NSTOP
- F(I,J) = F(I,J)*DELYSQ
- 128 CONTINUE
- 129 CONTINUE
- C
- C DEFINE THE A,B,C COEFFICIENTS IN W-ARRAY.
- C
- ID2 = MUNK
- ID3 = ID2+MUNK
- ID4 = ID3+MUNK
- S = DELYSQ*DELXSQ
- ST2 = 2.*S
- DO 130 I=1,MUNK
- W(I) = S
- J = ID2+I
- W(J) = -ST2+ELMBDA*DELYSQ
- J = ID3+I
- W(J) = S
- 130 CONTINUE
- IF (MP .EQ. 1) GO TO 131
- W(1) = 0.
- W(ID4) = 0.
- 131 CONTINUE
- GO TO (135,135,132,133,134),MP
- 132 W(ID2) = ST2
- GO TO 135
- 133 W(ID2) = ST2
- 134 W(ID3+1) = ST2
- 135 CONTINUE
- PERTRB = 0.
- IF (ELMBDA) 144,137,136
- 136 IERROR = 6
- GO TO 144
- 137 IF ((NBDCND.EQ.0 .OR. NBDCND.EQ.3) .AND.
- 1 (MBDCND.EQ.0 .OR. MBDCND.EQ.3)) GO TO 138
- GO TO 144
- C
- C FOR SINGULAR PROBLEMS MUST ADJUST DATA TO INSURE THAT A SOLUTION
- C WILL EXIST.
- C
- 138 A1 = 1.
- A2 = 1.
- IF (NBDCND .EQ. 3) A2 = 2.
- IF (MBDCND .EQ. 3) A1 = 2.
- S1 = 0.
- MSP1 = MSTART+1
- MSTM1 = MSTOP-1
- NSP1 = NSTART+1
- NSTM1 = NSTOP-1
- DO 140 J=NSP1,NSTM1
- S = 0.
- DO 139 I=MSP1,MSTM1
- S = S+F(I,J)
- 139 CONTINUE
- S1 = S1+S*A1+F(MSTART,J)+F(MSTOP,J)
- 140 CONTINUE
- S1 = A2*S1
- S = 0.
- DO 141 I=MSP1,MSTM1
- S = S+F(I,NSTART)+F(I,NSTOP)
- 141 CONTINUE
- S1 = S1+S*A1+F(MSTART,NSTART)+F(MSTART,NSTOP)+F(MSTOP,NSTART)+
- 1 F(MSTOP,NSTOP)
- S = (2.+(NUNK-2)*A2)*(2.+(MUNK-2)*A1)
- PERTRB = S1/S
- DO 143 J=NSTART,NSTOP
- DO 142 I=MSTART,MSTOP
- F(I,J) = F(I,J)-PERTRB
- 142 CONTINUE
- 143 CONTINUE
- PERTRB = PERTRB/DELYSQ
- C
- C SOLVE THE EQUATION.
- C
- 144 CALL GENBUN (NPEROD,NUNK,MPEROD,MUNK,W(1),W(ID2+1),W(ID3+1),
- 1 IDIMF,F(MSTART,NSTART),IERR1,W(ID4+1))
- W(1) = W(ID4+1)+3*MUNK
- C
- C FILL IN IDENTICAL VALUES WHEN HAVE PERIODIC BOUNDARY CONDITIONS.
- C
- IF (NBDCND .NE. 0) GO TO 146
- DO 145 I=MSTART,MSTOP
- F(I,NP1) = F(I,1)
- 145 CONTINUE
- 146 IF (MBDCND .NE. 0) GO TO 148
- DO 147 J=NSTART,NSTOP
- F(MP1,J) = F(1,J)
- 147 CONTINUE
- IF (NBDCND .EQ. 0) F(MP1,NP1) = F(1,NP1)
- 148 CONTINUE
- RETURN
- END
|