123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561 |
- *DECK HWSPLR
- SUBROUTINE HWSPLR (A, B, M, MBDCND, BDA, BDB, C, D, N, NBDCND,
- + BDC, BDD, ELMBDA, F, IDIMF, PERTRB, IERROR, W)
- C***BEGIN PROLOGUE HWSPLR
- C***PURPOSE Solve a finite difference approximation to the Helmholtz
- C equation in polar coordinates.
- C***LIBRARY SLATEC (FISHPACK)
- C***CATEGORY I2B1A1A
- C***TYPE SINGLE PRECISION (HWSPLR-S)
- C***KEYWORDS ELLIPTIC, FISHPACK, HELMHOLTZ, PDE, POLAR
- C***AUTHOR Adams, J., (NCAR)
- C Swarztrauber, P. N., (NCAR)
- C Sweet, R., (NCAR)
- C***DESCRIPTION
- C
- C Subroutine HWSPLR solves a finite difference approximation to the
- C Helmholtz equation in polar coordinates:
- C
- C (1/R)(d/dR)(R(dU/dR)) + (1/R**2)(d/dTHETA)(dU/dTHETA)
- C
- C + LAMBDA*U = F(R,THETA).
- C
- C
- C
- C
- C * * * * * * * * Parameter Description * * * * * * * * * *
- C
- C * * * * * * On Input * * * * * *
- C
- C A,B
- C The range of R, i.e., A .LE. R .LE. B. A must be less than B
- C and A must be non-negative.
- C
- C M
- C The number of panels into which the interval (A,B) is
- C subdivided. Hence, there will be M+1 grid points in the
- C R-direction given by R(I) = A+(I-1)DR, for I = 1,2,...,M+1,
- C where DR = (B-A)/M is the panel width. M must be greater than 3.
- C
- C MBDCND
- C Indicates the type of boundary condition at R = A and R = B.
- C
- C = 1 If the solution is specified at R = A and R = B.
- C = 2 If the solution is specified at R = A and the derivative of
- C the solution with respect to R is specified at R = B.
- C = 3 If the derivative of the solution with respect to R is
- C specified at R = A (see note below) and R = B.
- C = 4 If the derivative of the solution with respect to R is
- C specified at R = A (see note below) and the solution is
- C specified at R = B.
- C = 5 If the solution is unspecified at R = A = 0 and the
- C solution is specified at R = B.
- C = 6 If the solution is unspecified at R = A = 0 and the
- C derivative of the solution with respect to R is specified
- C at R = B.
- C
- C NOTE: If A = 0, do not use MBDCND = 3 or 4, but instead use
- C MBDCND = 1,2,5, or 6 .
- C
- C BDA
- C A one-dimensional array of length N+1 that specifies the values
- C of the derivative of the solution with respect to R at R = A.
- C When MBDCND = 3 or 4,
- C
- C BDA(J) = (d/dR)U(A,THETA(J)), J = 1,2,...,N+1 .
- C
- C When MBDCND has any other value, BDA is a dummy variable.
- C
- C BDB
- C A one-dimensional array of length N+1 that specifies the values
- C of the derivative of the solution with respect to R at R = B.
- C When MBDCND = 2,3, or 6,
- C
- C BDB(J) = (d/dR)U(B,THETA(J)), J = 1,2,...,N+1 .
- C
- C When MBDCND has any other value, BDB is a dummy variable.
- C
- C C,D
- C The range of THETA, i.e., C .LE. THETA .LE. D. C must be less
- C than D.
- C
- C N
- C The number of panels into which the interval (C,D) is
- C subdivided. Hence, there will be N+1 grid points in the
- C THETA-direction given by THETA(J) = C+(J-1)DTHETA for
- C J = 1,2,...,N+1, where DTHETA = (D-C)/N is the panel width. N
- C must be greater than 3.
- C
- C NBDCND
- C Indicates the type of boundary conditions at THETA = C and
- C at THETA = D.
- C
- C = 0 If the solution is periodic in THETA, i.e.,
- C U(I,J) = U(I,N+J).
- C = 1 If the solution is specified at THETA = C and THETA = D
- C (see note below).
- C = 2 If the solution is specified at THETA = C and the
- C derivative of the solution with respect to THETA is
- C specified at THETA = D (see note below).
- C = 4 If the derivative of the solution with respect to THETA is
- C specified at THETA = C and the solution is specified at
- C THETA = D (see note below).
- C
- C NOTE: When NBDCND = 1,2, or 4, do not use MBDCND = 5 or 6
- C (the former indicates that the solution is specified at
- C R = 0, the latter indicates the solution is unspecified
- C at R = 0). Use instead MBDCND = 1 or 2 .
- C
- C BDC
- C A one-dimensional array of length M+1 that specifies the values
- C of the derivative of the solution with respect to THETA at
- C THETA = C. When NBDCND = 3 or 4,
- C
- C BDC(I) = (d/dTHETA)U(R(I),C), I = 1,2,...,M+1 .
- C
- C When NBDCND has any other value, BDC is a dummy variable.
- C
- C BDD
- C A one-dimensional array of length M+1 that specifies the values
- C of the derivative of the solution with respect to THETA at
- C THETA = D. When NBDCND = 2 or 3,
- C
- C BDD(I) = (d/dTHETA)U(R(I),D), I = 1,2,...,M+1 .
- C
- C When NBDCND has any other value, BDD is a dummy variable.
- C
- C ELMBDA
- C The constant LAMBDA in the Helmholtz equation. If
- C LAMBDA .LT. 0, a solution may not exist. However, HWSPLR will
- C attempt to find a solution.
- C
- C F
- C A two-dimensional array that specifies the values of the right
- C side of the Helmholtz equation and boundary values (if any).
- C For I = 2,3,...,M and J = 2,3,...,N
- C
- C F(I,J) = F(R(I),THETA(J)).
- C
- C On the boundaries F is defined by
- C
- C MBDCND F(1,J) F(M+1,J)
- C ------ ------------- -------------
- C
- C 1 U(A,THETA(J)) U(B,THETA(J))
- C 2 U(A,THETA(J)) F(B,THETA(J))
- C 3 F(A,THETA(J)) F(B,THETA(J))
- C 4 F(A,THETA(J)) U(B,THETA(J)) J = 1,2,...,N+1
- C 5 F(0,0) U(B,THETA(J))
- C 6 F(0,0) F(B,THETA(J))
- C
- C NBDCND F(I,1) F(I,N+1)
- C ------ --------- ---------
- C
- C 0 F(R(I),C) F(R(I),C)
- C 1 U(R(I),C) U(R(I),D)
- C 2 U(R(I),C) F(R(I),D) I = 1,2,...,M+1
- C 3 F(R(I),C) F(R(I),D)
- C 4 F(R(I),C) U(R(I),D)
- C
- C F must be dimensioned at least (M+1)*(N+1).
- C
- C NOTE
- C
- C If the table calls for both the solution U and the right side F
- C at a corner then the solution must be specified.
- C
- C
- C IDIMF
- C The row (or first) dimension of the array F as it appears in the
- C program calling HWSPLR. This parameter is used to specify the
- C variable dimension of F. IDIMF must be at least M+1 .
- C
- C W
- C A one-dimensional array that must be provided by the user for
- C work space. W may require up to 4*(N+1) +
- C (13 + INT(log2(N+1)))*(M+1) locations. The actual number of
- C locations used is computed by HWSPLR and is returned in location
- C W(1).
- C
- C
- C * * * * * * On Output * * * * * *
- C
- C F
- C Contains the solution U(I,J) of the finite difference
- C approximation for the grid point (R(I),THETA(J)),
- C I = 1,2,...,M+1, J = 1,2,...,N+1 .
- C
- C PERTRB
- C If a combination of periodic, derivative, or unspecified
- C boundary conditions is specified for a Poisson equation
- C (LAMBDA = 0), a solution may not exist. PERTRB is a constant,
- C calculated and subtracted from F, which ensures that a solution
- C exists. HWSPLR then computes this solution, which is a least
- C squares solution to the original approximation. This solution
- C plus any constant is also a solution. Hence, the solution is
- C not unique. PERTRB should be small compared to the right side.
- C Otherwise, a solution is obtained to an essentially different
- C problem. This comparison should always be made to insure that a
- C meaningful solution has been obtained.
- C
- C IERROR
- C An error flag that indicates invalid input parameters. Except
- C for numbers 0 and 11, a solution is not attempted.
- C
- C = 0 No error.
- C = 1 A .LT. 0 .
- C = 2 A .GE. B.
- C = 3 MBDCND .LT. 1 or MBDCND .GT. 6 .
- C = 4 C .GE. D.
- C = 5 N .LE. 3
- C = 6 NBDCND .LT. 0 or .GT. 4 .
- C = 7 A = 0, MBDCND = 3 or 4 .
- C = 8 A .GT. 0, MBDCND .GE. 5 .
- C = 9 MBDCND .GE. 5, NBDCND .NE. 0 and NBDCND .NE. 3 .
- C = 10 IDIMF .LT. M+1 .
- C = 11 LAMBDA .GT. 0 .
- C = 12 M .LE. 3
- C
- C Since this is the only means of indicating a possibly incorrect
- C call to HWSPLR, the user should test IERROR after the call.
- C
- C W
- C W(1) contains the required length of W.
- C
- C *Long Description:
- C
- C * * * * * * * Program Specifications * * * * * * * * * * * *
- C
- C Dimension of BDA(N+1),BDB(N+1),BDC(M+1),BDD(M+1),F(IDIMF,N+1),
- C Arguments W(see argument list)
- C
- C Latest June 1, 1976
- C Revision
- C
- C Subprograms HWSPLR,GENBUN,POISD2,POISN2,POISP2,COSGEN,MERGE,
- C Required TRIX,TRI3,PIMACH
- C
- C Special None
- C Conditions
- C
- C Common NONE
- C Blocks
- C
- C I/O
- C
- C Precision Single
- C
- C Specialist Roland Sweet
- C
- C Language FORTRAN
- C
- C History Standardized April 1, 1973
- C Revised January 1, 1976
- C
- C Algorithm The routine defines the finite difference
- C equations, incorporates boundary data, and adjusts
- C the right side of singular systems and then calls
- C GENBUN to solve the system.
- C
- C Space 13430(octal) = 5912(decimal) locations on the NCAR
- C Required Control Data 7600
- C
- C Timing and The execution time T on the NCAR Control Data
- C Accuracy 7600 for subroutine HWSPLR is roughly proportional
- C to M*N*log2(N), but also depends on the input
- C parameters NBDCND and MBDCND. Some typical values
- C are listed in the table below.
- C The solution process employed results in a loss
- C of no more than three significant digits for N and
- C M as large as 64. More detailed information about
- C accuracy can be found in the documentation for
- C subroutine GENBUN which is the routine that
- C solves the finite difference equations.
- C
- C
- C M(=N) MBDCND NBDCND T(MSECS)
- C ----- ------ ------ --------
- C
- C 32 1 0 31
- C 32 1 1 23
- C 32 3 3 36
- C 64 1 0 128
- C 64 1 1 96
- C 64 3 3 142
- C
- C Portability American National Standards Institute FORTRAN.
- C The machine dependent constant PI is defined in
- C function PIMACH.
- C
- C Required COS
- C Resident
- C Routines
- C
- C Reference Swarztrauber, P. and R. Sweet, 'Efficient FORTRAN
- C Subprograms For The Solution Of Elliptic Equations'
- C NCAR TN/IA-109, July, 1975, 138 pp.
- C
- C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
- C
- C***REFERENCES P. N. Swarztrauber and R. Sweet, Efficient Fortran
- C subprograms for the solution of elliptic equations,
- C NCAR TN/IA-109, July 1975, 138 pp.
- C***ROUTINES CALLED GENBUN
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE HWSPLR
- C
- C
- DIMENSION F(IDIMF,*)
- DIMENSION BDA(*) ,BDB(*) ,BDC(*) ,BDD(*) ,
- 1 W(*)
- C***FIRST EXECUTABLE STATEMENT HWSPLR
- IERROR = 0
- IF (A .LT. 0.) IERROR = 1
- IF (A .GE. B) IERROR = 2
- IF (MBDCND.LE.0 .OR. MBDCND.GE.7) IERROR = 3
- IF (C .GE. D) IERROR = 4
- IF (N .LE. 3) IERROR = 5
- IF (NBDCND.LE.-1 .OR. NBDCND.GE.5) IERROR = 6
- IF (A.EQ.0. .AND. (MBDCND.EQ.3 .OR. MBDCND.EQ.4)) IERROR = 7
- IF (A.GT.0. .AND. MBDCND.GE.5) IERROR = 8
- IF (MBDCND.GE.5 .AND. NBDCND.NE.0 .AND. NBDCND.NE.3) IERROR = 9
- IF (IDIMF .LT. M+1) IERROR = 10
- IF (M .LE. 3) IERROR = 12
- IF (IERROR .NE. 0) RETURN
- MP1 = M+1
- DELTAR = (B-A)/M
- DLRBY2 = DELTAR/2.
- DLRSQ = DELTAR**2
- NP1 = N+1
- DELTHT = (D-C)/N
- DLTHSQ = DELTHT**2
- NP = NBDCND+1
- C
- C DEFINE RANGE OF INDICES I AND J FOR UNKNOWNS U(I,J).
- C
- MSTART = 2
- MSTOP = MP1
- GO TO (101,105,102,103,104,105),MBDCND
- 101 MSTOP = M
- GO TO 105
- 102 MSTART = 1
- GO TO 105
- 103 MSTART = 1
- 104 MSTOP = M
- 105 MUNK = MSTOP-MSTART+1
- NSTART = 1
- NSTOP = N
- GO TO (109,106,107,108,109),NP
- 106 NSTART = 2
- GO TO 109
- 107 NSTART = 2
- 108 NSTOP = NP1
- 109 NUNK = NSTOP-NSTART+1
- C
- C DEFINE A,B,C COEFFICIENTS IN W-ARRAY.
- C
- ID2 = MUNK
- ID3 = ID2+MUNK
- ID4 = ID3+MUNK
- ID5 = ID4+MUNK
- ID6 = ID5+MUNK
- A1 = 2./DLRSQ
- IJ = 0
- IF (MBDCND.EQ.3 .OR. MBDCND.EQ.4) IJ = 1
- DO 110 I=1,MUNK
- R = A+(I-IJ)*DELTAR
- J = ID5+I
- W(J) = R
- J = ID6+I
- W(J) = 1./R**2
- W(I) = (R-DLRBY2)/(R*DLRSQ)
- J = ID3+I
- W(J) = (R+DLRBY2)/(R*DLRSQ)
- J = ID2+I
- W(J) = -A1+ELMBDA
- 110 CONTINUE
- GO TO (114,111,112,113,114,111),MBDCND
- 111 W(ID2) = A1
- GO TO 114
- 112 W(ID2) = A1
- 113 W(ID3+1) = A1
- 114 CONTINUE
- C
- C ENTER BOUNDARY DATA FOR R-BOUNDARIES.
- C
- GO TO (115,115,117,117,119,119),MBDCND
- 115 A1 = W(1)
- DO 116 J=NSTART,NSTOP
- F(2,J) = F(2,J)-A1*F(1,J)
- 116 CONTINUE
- GO TO 119
- 117 A1 = 2.*DELTAR*W(1)
- DO 118 J=NSTART,NSTOP
- F(1,J) = F(1,J)+A1*BDA(J)
- 118 CONTINUE
- 119 GO TO (120,122,122,120,120,122),MBDCND
- 120 A1 = W(ID4)
- DO 121 J=NSTART,NSTOP
- F(M,J) = F(M,J)-A1*F(MP1,J)
- 121 CONTINUE
- GO TO 124
- 122 A1 = 2.*DELTAR*W(ID4)
- DO 123 J=NSTART,NSTOP
- F(MP1,J) = F(MP1,J)-A1*BDB(J)
- 123 CONTINUE
- C
- C ENTER BOUNDARY DATA FOR THETA-BOUNDARIES.
- C
- 124 A1 = 1./DLTHSQ
- L = ID5-MSTART+1
- LP = ID6-MSTART+1
- GO TO (134,125,125,127,127),NP
- 125 DO 126 I=MSTART,MSTOP
- J = I+LP
- F(I,2) = F(I,2)-A1*W(J)*F(I,1)
- 126 CONTINUE
- GO TO 129
- 127 A1 = 2./DELTHT
- DO 128 I=MSTART,MSTOP
- J = I+LP
- F(I,1) = F(I,1)+A1*W(J)*BDC(I)
- 128 CONTINUE
- 129 A1 = 1./DLTHSQ
- GO TO (134,130,132,132,130),NP
- 130 DO 131 I=MSTART,MSTOP
- J = I+LP
- F(I,N) = F(I,N)-A1*W(J)*F(I,NP1)
- 131 CONTINUE
- GO TO 134
- 132 A1 = 2./DELTHT
- DO 133 I=MSTART,MSTOP
- J = I+LP
- F(I,NP1) = F(I,NP1)-A1*W(J)*BDD(I)
- 133 CONTINUE
- 134 CONTINUE
- C
- C ADJUST RIGHT SIDE OF EQUATION FOR UNKNOWN AT POLE WHEN HAVE
- C DERIVATIVE SPECIFIED BOUNDARY CONDITIONS.
- C
- IF (MBDCND.GE.5 .AND. NBDCND.EQ.3)
- 1 F(1,1) = F(1,1)-(BDD(2)-BDC(2))*4./(N*DELTHT*DLRSQ)
- C
- C ADJUST RIGHT SIDE OF SINGULAR PROBLEMS TO INSURE EXISTENCE OF A
- C SOLUTION.
- C
- PERTRB = 0.
- IF (ELMBDA) 144,136,135
- 135 IERROR = 11
- GO TO 144
- 136 IF (NBDCND.NE.0 .AND. NBDCND.NE.3) GO TO 144
- S2 = 0.
- GO TO (144,144,137,144,144,138),MBDCND
- 137 W(ID5+1) = .5*(W(ID5+2)-DLRBY2)
- S2 = .25*DELTAR
- 138 A2 = 2.
- IF (NBDCND .EQ. 0) A2 = 1.
- J = ID5+MUNK
- W(J) = .5*(W(J-1)+DLRBY2)
- S = 0.
- DO 140 I=MSTART,MSTOP
- S1 = 0.
- IJ = NSTART+1
- K = NSTOP-1
- DO 139 J=IJ,K
- S1 = S1+F(I,J)
- 139 CONTINUE
- J = I+L
- S = S+(A2*S1+F(I,NSTART)+F(I,NSTOP))*W(J)
- 140 CONTINUE
- S2 = M*A+DELTAR*((M-1)*(M+1)*.5+.25)+S2
- S1 = (2.+A2*(NUNK-2))*S2
- IF (MBDCND .EQ. 3) GO TO 141
- S2 = N*A2*DELTAR/8.
- S = S+F(1,1)*S2
- S1 = S1+S2
- 141 CONTINUE
- PERTRB = S/S1
- DO 143 I=MSTART,MSTOP
- DO 142 J=NSTART,NSTOP
- F(I,J) = F(I,J)-PERTRB
- 142 CONTINUE
- 143 CONTINUE
- 144 CONTINUE
- C
- C MULTIPLY I-TH EQUATION THROUGH BY (R(I)*DELTHT)**2.
- C
- DO 146 I=MSTART,MSTOP
- K = I-MSTART+1
- J = I+LP
- A1 = DLTHSQ/W(J)
- W(K) = A1*W(K)
- J = ID2+K
- W(J) = A1*W(J)
- J = ID3+K
- W(J) = A1*W(J)
- DO 145 J=NSTART,NSTOP
- F(I,J) = A1*F(I,J)
- 145 CONTINUE
- 146 CONTINUE
- W(1) = 0.
- W(ID4) = 0.
- C
- C CALL GENBUN TO SOLVE THE SYSTEM OF EQUATIONS.
- C
- CALL GENBUN (NBDCND,NUNK,1,MUNK,W(1),W(ID2+1),W(ID3+1),IDIMF,
- 1 F(MSTART,NSTART),IERR1,W(ID4+1))
- IWSTOR = W(ID4+1)+3*MUNK
- GO TO (157,157,157,157,148,147),MBDCND
- C
- C ADJUST THE SOLUTION AS NECESSARY FOR THE PROBLEMS WHERE A = 0.
- C
- 147 IF (ELMBDA .NE. 0.) GO TO 148
- YPOLE = 0.
- GO TO 155
- 148 CONTINUE
- J = ID5+MUNK
- W(J) = W(ID2)/W(ID3)
- DO 149 IP=3,MUNK
- I = MUNK-IP+2
- J = ID5+I
- LP = ID2+I
- K = ID3+I
- W(J) = W(I)/(W(LP)-W(K)*W(J+1))
- 149 CONTINUE
- W(ID5+1) = -.5*DLTHSQ/(W(ID2+1)-W(ID3+1)*W(ID5+2))
- DO 150 I=2,MUNK
- J = ID5+I
- W(J) = -W(J)*W(J-1)
- 150 CONTINUE
- S = 0.
- DO 151 J=NSTART,NSTOP
- S = S+F(2,J)
- 151 CONTINUE
- A2 = NUNK
- IF (NBDCND .EQ. 0) GO TO 152
- S = S-.5*(F(2,NSTART)+F(2,NSTOP))
- A2 = A2-1.
- 152 YPOLE = (.25*DLRSQ*F(1,1)-S/A2)/(W(ID5+1)-1.+ELMBDA*DLRSQ*.25)
- DO 154 I=MSTART,MSTOP
- K = L+I
- DO 153 J=NSTART,NSTOP
- F(I,J) = F(I,J)+YPOLE*W(K)
- 153 CONTINUE
- 154 CONTINUE
- 155 DO 156 J=1,NP1
- F(1,J) = YPOLE
- 156 CONTINUE
- 157 CONTINUE
- IF (NBDCND .NE. 0) GO TO 159
- DO 158 I=MSTART,MSTOP
- F(I,NP1) = F(I,1)
- 158 CONTINUE
- 159 CONTINUE
- W(1) = IWSTOR
- RETURN
- END
|