123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- *DECK IMTQLV
- SUBROUTINE IMTQLV (N, D, E, E2, W, IND, IERR, RV1)
- C***BEGIN PROLOGUE IMTQLV
- C***PURPOSE Compute the eigenvalues of a symmetric tridiagonal matrix
- C using the implicit QL method. Eigenvectors may be computed
- C later.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4A5, D4C2A
- C***TYPE SINGLE PRECISION (IMTQLV-S)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a variant of IMTQL1 which is a translation of
- C ALGOL procedure IMTQL1, NUM. MATH. 12, 377-383(1968) by Martin and
- C Wilkinson, as modified in NUM. MATH. 15, 450(1970) by Dubrulle.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 241-248(1971).
- C
- C This subroutine finds the eigenvalues of a SYMMETRIC TRIDIAGONAL
- C matrix by the implicit QL method and associates with them
- C their corresponding submatrix indices.
- C
- C On INPUT
- C
- C N is the order of the matrix. N is an INTEGER variable.
- C
- C D contains the diagonal elements of the symmetric tridiagonal
- C matrix. D is a one-dimensional REAL array, dimensioned D(N).
- C
- C E contains the subdiagonal elements of the symmetric
- C tridiagonal matrix in its last N-1 positions. E(1) is
- C arbitrary. E is a one-dimensional REAL array, dimensioned
- C E(N).
- C
- C E2 contains the squares of the corresponding elements of E in
- C its last N-1 positions. E2(1) is arbitrary. E2 is a one-
- C dimensional REAL array, dimensioned E2(N).
- C
- C On OUTPUT
- C
- C D and E are unaltered.
- C
- C Elements of E2, corresponding to elements of E regarded as
- C negligible, have been replaced by zero causing the matrix to
- C split into a direct sum of submatrices. E2(1) is also set
- C to zero.
- C
- C W contains the eigenvalues in ascending order. If an error
- C exit is made, the eigenvalues are correct and ordered for
- C indices 1, 2, ..., IERR-1, but may not be the smallest
- C eigenvalues. W is a one-dimensional REAL array, dimensioned
- C W(N).
- C
- C IND contains the submatrix indices associated with the
- C corresponding eigenvalues in W -- 1 for eigenvalues belonging
- C to the first submatrix from the top, 2 for those belonging to
- C the second submatrix, etc. IND is a one-dimensional REAL
- C array, dimensioned IND(N).
- C
- C IERR is an INTEGER flag set to
- C Zero for normal return,
- C J if the J-th eigenvalue has not been
- C determined after 30 iterations.
- C The eigenvalues should be correct for indices
- C 1, 2, ..., IERR-1. These eigenvalues are
- C ordered, but are not necessarily the smallest.
- C
- C RV1 is a one-dimensional REAL array used for temporary storage,
- C dimensioned RV1(N).
- C
- C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED PYTHAG
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE IMTQLV
- C
- INTEGER I,J,K,L,M,N,II,MML,TAG,IERR
- REAL D(*),E(*),E2(*),W(*),RV1(*)
- REAL B,C,F,G,P,R,S,S1,S2
- REAL PYTHAG
- INTEGER IND(*)
- C
- C***FIRST EXECUTABLE STATEMENT IMTQLV
- IERR = 0
- K = 0
- TAG = 0
- C
- DO 100 I = 1, N
- W(I) = D(I)
- IF (I .NE. 1) RV1(I-1) = E(I)
- 100 CONTINUE
- C
- E2(1) = 0.0E0
- RV1(N) = 0.0E0
- C
- DO 290 L = 1, N
- J = 0
- C .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
- 105 DO 110 M = L, N
- IF (M .EQ. N) GO TO 120
- S1 = ABS(W(M)) + ABS(W(M+1))
- S2 = S1 + ABS(RV1(M))
- IF (S2 .EQ. S1) GO TO 120
- C .......... GUARD AGAINST UNDERFLOWED ELEMENT OF E2 ..........
- IF (E2(M+1) .EQ. 0.0E0) GO TO 125
- 110 CONTINUE
- C
- 120 IF (M .LE. K) GO TO 130
- IF (M .NE. N) E2(M+1) = 0.0E0
- 125 K = M
- TAG = TAG + 1
- 130 P = W(L)
- IF (M .EQ. L) GO TO 215
- IF (J .EQ. 30) GO TO 1000
- J = J + 1
- C .......... FORM SHIFT ..........
- G = (W(L+1) - P) / (2.0E0 * RV1(L))
- R = PYTHAG(G,1.0E0)
- G = W(M) - P + RV1(L) / (G + SIGN(R,G))
- S = 1.0E0
- C = 1.0E0
- P = 0.0E0
- MML = M - L
- C .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
- DO 200 II = 1, MML
- I = M - II
- F = S * RV1(I)
- B = C * RV1(I)
- IF (ABS(F) .LT. ABS(G)) GO TO 150
- C = G / F
- R = SQRT(C*C+1.0E0)
- RV1(I+1) = F * R
- S = 1.0E0 / R
- C = C * S
- GO TO 160
- 150 S = F / G
- R = SQRT(S*S+1.0E0)
- RV1(I+1) = G * R
- C = 1.0E0 / R
- S = S * C
- 160 G = W(I+1) - P
- R = (W(I) - G) * S + 2.0E0 * C * B
- P = S * R
- W(I+1) = G + P
- G = C * R - B
- 200 CONTINUE
- C
- W(L) = W(L) - P
- RV1(L) = G
- RV1(M) = 0.0E0
- GO TO 105
- C .......... ORDER EIGENVALUES ..........
- 215 IF (L .EQ. 1) GO TO 250
- C .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
- DO 230 II = 2, L
- I = L + 2 - II
- IF (P .GE. W(I-1)) GO TO 270
- W(I) = W(I-1)
- IND(I) = IND(I-1)
- 230 CONTINUE
- C
- 250 I = 1
- 270 W(I) = P
- IND(I) = TAG
- 290 CONTINUE
- C
- GO TO 1001
- C .......... SET ERROR -- NO CONVERGENCE TO AN
- C EIGENVALUE AFTER 30 ITERATIONS ..........
- 1000 IERR = L
- 1001 RETURN
- END
|