123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239 |
- *DECK ISDOMN
- INTEGER FUNCTION ISDOMN (N, B, X, NELT, IA, JA, A, ISYM, MSOLVE,
- + NSAVE, ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, AP,
- + EMAP, DZ, CSAV, RWORK, IWORK, AK, BNRM, SOLNRM)
- C***BEGIN PROLOGUE ISDOMN
- C***SUBSIDIARY
- C***PURPOSE Preconditioned Orthomin Stop Test.
- C This routine calculates the stop test for the Orthomin
- C iteration scheme. It returns a non-zero if the error
- C estimate (the type of which is determined by ITOL) is
- C less than the user specified tolerance TOL.
- C***LIBRARY SLATEC (SLAP)
- C***CATEGORY D2A4, D2B4
- C***TYPE DOUBLE PRECISION (ISSOMN-S, ISDOMN-D)
- C***KEYWORDS ITERATIVE PRECONDITION, NON-SYMMETRIC LINEAR SYSTEM,
- C ORTHOMIN, SLAP, SPARSE, STOP TEST
- C***AUTHOR Greenbaum, Anne, (Courant Institute)
- C Seager, Mark K., (LLNL)
- C Lawrence Livermore National Laboratory
- C PO BOX 808, L-60
- C Livermore, CA 94550 (510) 423-3141
- C seager@llnl.gov
- C***DESCRIPTION
- C
- C *Usage:
- C INTEGER N, NELT, IA(NELT), JA(NELT), ISYM, NSAVE, ITOL, ITMAX
- C INTEGER ITER, IERR, IUNIT, IWORK(USER DEFINED)
- C DOUBLE PRECISION B(N), X(N), A(NELT), TOL, ERR, R(N), Z(N)
- C DOUBLE PRECISION P(N,0:NSAVE), AP(N,0:NSAVE), EMAP(N,0:NSAVE)
- C DOUBLE PRECISION DZ(N), CSAV(NSAVE), RWORK(USER DEFINED), AK
- C DOUBLE PRECISION BNRM, SOLNRM
- C EXTERNAL MSOLVE
- C
- C IF( ISDOMN(N, B, X, NELT, IA, JA, A, ISYM, MSOLVE, NSAVE,
- C $ ITOL, TOL, ITMAX, ITER, ERR, IERR, IUNIT, R, Z, P, AP,
- C $ EMAP, DZ, CSAV, RWORK, IWORK, AK, BNRM, SOLNRM)
- C $ .NE.0 ) THEN ITERATION CONVERGED
- C
- C *Arguments:
- C N :IN Integer.
- C Order of the matrix.
- C B :IN Double Precision B(N).
- C Right-hand side vector.
- C X :IN Double Precision X(N).
- C On input X is your initial guess for solution vector.
- C On output X is the final approximate solution.
- C NELT :IN Integer.
- C Number of Non-Zeros stored in A.
- C IA :IN Integer IA(NELT).
- C JA :IN Integer JA(NELT).
- C A :IN Double Precision A(NELT).
- C These arrays should hold the matrix A in either the SLAP
- C Triad format or the SLAP Column format. See "Description"
- C in the DSDOMN or DSLUOM prologue.
- C ISYM :IN Integer.
- C Flag to indicate symmetric storage format.
- C If ISYM=0, all non-zero entries of the matrix are stored.
- C If ISYM=1, the matrix is symmetric, and only the upper
- C or lower triangle of the matrix is stored.
- C MSOLVE :EXT External.
- C Name of a routine which solves a linear system MZ = R for
- C Z given R with the preconditioning matrix M (M is supplied via
- C RWORK and IWORK arrays). The name of the MSOLVE routine must
- C be declared external in the calling program. The calling
- C sequence to MSOLVE is:
- C CALL MSOLVE(N, R, Z, NELT, IA, JA, A, ISYM, RWORK, IWORK)
- C Where N is the number of unknowns, R is the right-hand side
- C vector and Z is the solution upon return. NELT, IA, JA, A and
- C ISYM are defined as above. RWORK is a double precision array
- C that can be used to pass necessary preconditioning information
- C and/or workspace to MSOLVE. IWORK is an integer work array
- C for the same purpose as RWORK.
- C NSAVE :IN Integer.
- C Number of direction vectors to save and orthogonalize against.
- C ITOL :IN Integer.
- C Flag to indicate type of convergence criterion.
- C If ITOL=1, iteration stops when the 2-norm of the residual
- C divided by the 2-norm of the right-hand side is less than TOL.
- C If ITOL=2, iteration stops when the 2-norm of M-inv times the
- C residual divided by the 2-norm of M-inv times the right hand
- C side is less than TOL, where M-inv is the inverse of the
- C diagonal of A.
- C ITOL=11 is often useful for checking and comparing different
- C routines. For this case, the user must supply the "exact"
- C solution or a very accurate approximation (one with an error
- C much less than TOL) through a common block,
- C COMMON /DSLBLK/ SOLN( )
- C If ITOL=11, iteration stops when the 2-norm of the difference
- C between the iterative approximation and the user-supplied
- C solution divided by the 2-norm of the user-supplied solution
- C is less than TOL. Note that this requires the user to set up
- C the "COMMON /DSLBLK/ SOLN(LENGTH)" in the calling routine.
- C The routine with this declaration should be loaded before the
- C stop test so that the correct length is used by the loader.
- C This procedure is not standard Fortran and may not work
- C correctly on your system (although it has worked on every
- C system the authors have tried). If ITOL is not 11 then this
- C common block is indeed standard Fortran.
- C TOL :IN Double Precision.
- C Convergence criterion, as described above.
- C ITMAX :IN Integer.
- C Maximum number of iterations.
- C ITER :IN Integer.
- C Current iteration count. (Must be zero on first call.)
- C ERR :OUT Double Precision.
- C Error estimate of error in final approximate solution, as
- C defined by ITOL.
- C IERR :OUT Integer.
- C Error flag. IERR is set to 3 if ITOL is not one of the
- C acceptable values, see above.
- C IUNIT :IN Integer.
- C Unit number on which to write the error at each iteration,
- C if this is desired for monitoring convergence. If unit
- C number is 0, no writing will occur.
- C R :IN Double Precision R(N).
- C The residual R = B-AX.
- C Z :WORK Double Precision Z(N).
- C P :IN Double Precision P(N,0:NSAVE).
- C Workspace used to hold the conjugate direction vector(s).
- C AP :IN Double Precision AP(N,0:NSAVE).
- C Workspace used to hold the matrix A times the P vector(s).
- C EMAP :IN Double Precision EMAP(N,0:NSAVE).
- C Workspace used to hold M-inv times the AP vector(s).
- C DZ :WORK Double Precision DZ(N).
- C Workspace.
- C CSAV :DUMMY Double Precision CSAV(NSAVE)
- C Reserved for future use.
- C RWORK :WORK Double Precision RWORK(USER DEFINED).
- C Double Precision array that can be used for workspace in
- C MSOLVE.
- C IWORK :WORK Integer IWORK(USER DEFINED).
- C Integer array that can be used for workspace in MSOLVE.
- C AK :IN Double Precision.
- C Current iterate Orthomin iteration parameter.
- C BNRM :OUT Double Precision.
- C Current solution B-norm, if ITOL = 1 or 2.
- C SOLNRM :OUT Double Precision.
- C True solution norm, if ITOL = 11.
- C
- C *Function Return Values:
- C 0 : Error estimate (determined by ITOL) is *NOT* less than the
- C specified tolerance, TOL. The iteration must continue.
- C 1 : Error estimate (determined by ITOL) is less than the
- C specified tolerance, TOL. The iteration can be considered
- C complete.
- C
- C *Cautions:
- C This routine will attempt to write to the Fortran logical output
- C unit IUNIT, if IUNIT .ne. 0. Thus, the user must make sure that
- C this logical unit is attached to a file or terminal before calling
- C this routine with a non-zero value for IUNIT. This routine does
- C not check for the validity of a non-zero IUNIT unit number.
- C
- C***SEE ALSO DOMN, DSDOMN, DSLUOM
- C***ROUTINES CALLED D1MACH, DNRM2
- C***COMMON BLOCKS DSLBLK
- C***REVISION HISTORY (YYMMDD)
- C 890404 DATE WRITTEN
- C 890404 Previous REVISION DATE
- C 890915 Made changes requested at July 1989 CML Meeting. (MKS)
- C 890922 Numerous changes to prologue to make closer to SLATEC
- C standard. (FNF)
- C 890929 Numerous changes to reduce SP/DP differences. (FNF)
- C 891003 Removed C***REFER TO line, per MKS.
- C 910411 Prologue converted to Version 4.0 format. (BAB)
- C 910502 Removed MSOLVE from ROUTINES CALLED list. (FNF)
- C 910506 Made subsidiary to DOMN. (FNF)
- C 920407 COMMON BLOCK renamed DSLBLK. (WRB)
- C 920511 Added complete declaration section. (WRB)
- C 920930 Corrected to not print AK when ITER=0. (FNF)
- C 921026 Changed 1.0E10 to D1MACH(2) and corrected D to E in
- C output format. (FNF)
- C 921113 Corrected C***CATEGORY line. (FNF)
- C***END PROLOGUE ISDOMN
- C .. Scalar Arguments ..
- DOUBLE PRECISION AK, BNRM, ERR, SOLNRM, TOL
- INTEGER IERR, ISYM, ITER, ITMAX, ITOL, IUNIT, N, NELT, NSAVE
- C .. Array Arguments ..
- DOUBLE PRECISION A(NELT), AP(N,0:NSAVE), B(N), CSAV(NSAVE),
- + DZ(N), EMAP(N,0:NSAVE), P(N,0:NSAVE), R(N),
- + RWORK(*), X(N), Z(N)
- INTEGER IA(NELT), IWORK(*), JA(NELT)
- C .. Subroutine Arguments ..
- EXTERNAL MSOLVE
- C .. Arrays in Common ..
- DOUBLE PRECISION SOLN(1)
- C .. Local Scalars ..
- INTEGER I
- C .. External Functions ..
- DOUBLE PRECISION D1MACH, DNRM2
- EXTERNAL D1MACH, DNRM2
- C .. Common blocks ..
- COMMON /DSLBLK/ SOLN
- C***FIRST EXECUTABLE STATEMENT ISDOMN
- ISDOMN = 0
- C
- IF( ITOL.EQ.1 ) THEN
- C err = ||Residual||/||RightHandSide|| (2-Norms).
- IF(ITER .EQ. 0) BNRM = DNRM2(N, B, 1)
- ERR = DNRM2(N, R, 1)/BNRM
- ELSE IF( ITOL.EQ.2 ) THEN
- C -1 -1
- C err = ||M Residual||/||M RightHandSide|| (2-Norms).
- IF(ITER .EQ. 0) THEN
- CALL MSOLVE(N, B, DZ, NELT, IA, JA, A, ISYM, RWORK, IWORK)
- BNRM = DNRM2(N, DZ, 1)
- ENDIF
- ERR = DNRM2(N, Z, 1)/BNRM
- ELSE IF( ITOL.EQ.11 ) THEN
- C err = ||x-TrueSolution||/||TrueSolution|| (2-Norms).
- IF(ITER .EQ. 0) SOLNRM = DNRM2(N, SOLN, 1)
- DO 10 I = 1, N
- DZ(I) = X(I) - SOLN(I)
- 10 CONTINUE
- ERR = DNRM2(N, DZ, 1)/SOLNRM
- ELSE
- C
- C If we get here ITOL is not one of the acceptable values.
- ERR = D1MACH(2)
- IERR = 3
- ENDIF
- C
- IF(IUNIT .NE. 0) THEN
- IF( ITER.EQ.0 ) THEN
- WRITE(IUNIT,1000) NSAVE, N, ITOL
- WRITE(IUNIT,1010) ITER, ERR
- ELSE
- WRITE(IUNIT,1010) ITER, ERR, AK
- ENDIF
- ENDIF
- IF(ERR .LE. TOL) ISDOMN = 1
- C
- RETURN
- 1000 FORMAT(' Preconditioned Orthomin(',I3,') for ',
- $ 'N, ITOL = ',I5, I5,
- $ /' ITER',' Error Estimate',' Alpha')
- 1010 FORMAT(1X,I4,1X,D16.7,1X,D16.7)
- C------------- LAST LINE OF ISDOMN FOLLOWS ----------------------------
- END
|