minfit.f 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. *DECK MINFIT
  2. SUBROUTINE MINFIT (NM, M, N, A, W, IP, B, IERR, RV1)
  3. C***BEGIN PROLOGUE MINFIT
  4. C***PURPOSE Compute the singular value decomposition of a rectangular
  5. C matrix and solve the related linear least squares problem.
  6. C***LIBRARY SLATEC (EISPACK)
  7. C***CATEGORY D9
  8. C***TYPE SINGLE PRECISION (MINFIT-S)
  9. C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
  10. C***AUTHOR Smith, B. T., et al.
  11. C***DESCRIPTION
  12. C
  13. C This subroutine is a translation of the ALGOL procedure MINFIT,
  14. C NUM. MATH. 14, 403-420(1970) by Golub and Reinsch.
  15. C HANDBOOK FOR AUTO. COMP., VOL II-LINEAR ALGEBRA, 134-151(1971).
  16. C
  17. C This subroutine determines, towards the solution of the linear
  18. C T
  19. C system AX=B, the singular value decomposition A=USV of a real
  20. C T
  21. C M by N rectangular matrix, forming U B rather than U. Householder
  22. C bidiagonalization and a variant of the QR algorithm are used.
  23. C
  24. C On INPUT
  25. C
  26. C NM must be set to the row dimension of the two-dimensional
  27. C array parameters, A and B, as declared in the calling
  28. C program dimension statement. Note that NM must be at least
  29. C as large as the maximum of M and N. NM is an INTEGER
  30. C variable.
  31. C
  32. C M is the number of rows of A and B. M is an INTEGER variable.
  33. C
  34. C N is the number of columns of A and the order of V. N is an
  35. C INTEGER variable.
  36. C
  37. C A contains the rectangular coefficient matrix of the system.
  38. C A is a two-dimensional REAL array, dimensioned A(NM,N).
  39. C
  40. C IP is the number of columns of B. IP can be zero.
  41. C
  42. C B contains the constant column matrix of the system if IP is
  43. C not zero. Otherwise, B is not referenced. B is a two-
  44. C dimensional REAL array, dimensioned B(NM,IP).
  45. C
  46. C On OUTPUT
  47. C
  48. C A has been overwritten by the matrix V (orthogonal) of the
  49. C decomposition in its first N rows and columns. If an
  50. C error exit is made, the columns of V corresponding to
  51. C indices of correct singular values should be correct.
  52. C
  53. C W contains the N (non-negative) singular values of A (the
  54. C diagonal elements of S). They are unordered. If an
  55. C error exit is made, the singular values should be correct
  56. C for indices IERR+1, IERR+2, ..., N. W is a one-dimensional
  57. C REAL array, dimensioned W(N).
  58. C
  59. C T
  60. C B has been overwritten by U B. If an error exit is made,
  61. C T
  62. C the rows of U B corresponding to indices of correct singular
  63. C values should be correct.
  64. C
  65. C IERR is an INTEGER flag set to
  66. C Zero for normal return,
  67. C K if the K-th singular value has not been
  68. C determined after 30 iterations.
  69. C The singular values should be correct for
  70. C indices IERR+1, IERR+2, ..., N.
  71. C
  72. C RV1 is a one-dimensional REAL array used for temporary storage,
  73. C dimensioned RV1(N).
  74. C
  75. C Calls PYTHAG(A,B) for sqrt(A**2 + B**2).
  76. C
  77. C Questions and comments should be directed to B. S. Garbow,
  78. C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
  79. C ------------------------------------------------------------------
  80. C
  81. C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
  82. C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
  83. C system Routines - EISPACK Guide, Springer-Verlag,
  84. C 1976.
  85. C***ROUTINES CALLED PYTHAG
  86. C***REVISION HISTORY (YYMMDD)
  87. C 760101 DATE WRITTEN
  88. C 890531 Changed all specific intrinsics to generic. (WRB)
  89. C 890831 Modified array declarations. (WRB)
  90. C 890831 REVISION DATE from Version 3.2
  91. C 891214 Prologue converted to Version 4.0 format. (BAB)
  92. C 920501 Reformatted the REFERENCES section. (WRB)
  93. C***END PROLOGUE MINFIT
  94. C
  95. INTEGER I,J,K,L,M,N,II,IP,I1,KK,K1,LL,L1,M1,NM,ITS,IERR
  96. REAL A(NM,*),W(*),B(NM,IP),RV1(*)
  97. REAL C,F,G,H,S,X,Y,Z,SCALE,S1
  98. REAL PYTHAG
  99. C
  100. C***FIRST EXECUTABLE STATEMENT MINFIT
  101. IERR = 0
  102. C .......... HOUSEHOLDER REDUCTION TO BIDIAGONAL FORM ..........
  103. G = 0.0E0
  104. SCALE = 0.0E0
  105. S1 = 0.0E0
  106. C
  107. DO 300 I = 1, N
  108. L = I + 1
  109. RV1(I) = SCALE * G
  110. G = 0.0E0
  111. S = 0.0E0
  112. SCALE = 0.0E0
  113. IF (I .GT. M) GO TO 210
  114. C
  115. DO 120 K = I, M
  116. 120 SCALE = SCALE + ABS(A(K,I))
  117. C
  118. IF (SCALE .EQ. 0.0E0) GO TO 210
  119. C
  120. DO 130 K = I, M
  121. A(K,I) = A(K,I) / SCALE
  122. S = S + A(K,I)**2
  123. 130 CONTINUE
  124. C
  125. F = A(I,I)
  126. G = -SIGN(SQRT(S),F)
  127. H = F * G - S
  128. A(I,I) = F - G
  129. IF (I .EQ. N) GO TO 160
  130. C
  131. DO 150 J = L, N
  132. S = 0.0E0
  133. C
  134. DO 140 K = I, M
  135. 140 S = S + A(K,I) * A(K,J)
  136. C
  137. F = S / H
  138. C
  139. DO 150 K = I, M
  140. A(K,J) = A(K,J) + F * A(K,I)
  141. 150 CONTINUE
  142. C
  143. 160 IF (IP .EQ. 0) GO TO 190
  144. C
  145. DO 180 J = 1, IP
  146. S = 0.0E0
  147. C
  148. DO 170 K = I, M
  149. 170 S = S + A(K,I) * B(K,J)
  150. C
  151. F = S / H
  152. C
  153. DO 180 K = I, M
  154. B(K,J) = B(K,J) + F * A(K,I)
  155. 180 CONTINUE
  156. C
  157. 190 DO 200 K = I, M
  158. 200 A(K,I) = SCALE * A(K,I)
  159. C
  160. 210 W(I) = SCALE * G
  161. G = 0.0E0
  162. S = 0.0E0
  163. SCALE = 0.0E0
  164. IF (I .GT. M .OR. I .EQ. N) GO TO 290
  165. C
  166. DO 220 K = L, N
  167. 220 SCALE = SCALE + ABS(A(I,K))
  168. C
  169. IF (SCALE .EQ. 0.0E0) GO TO 290
  170. C
  171. DO 230 K = L, N
  172. A(I,K) = A(I,K) / SCALE
  173. S = S + A(I,K)**2
  174. 230 CONTINUE
  175. C
  176. F = A(I,L)
  177. G = -SIGN(SQRT(S),F)
  178. H = F * G - S
  179. A(I,L) = F - G
  180. C
  181. DO 240 K = L, N
  182. 240 RV1(K) = A(I,K) / H
  183. C
  184. IF (I .EQ. M) GO TO 270
  185. C
  186. DO 260 J = L, M
  187. S = 0.0E0
  188. C
  189. DO 250 K = L, N
  190. 250 S = S + A(J,K) * A(I,K)
  191. C
  192. DO 260 K = L, N
  193. A(J,K) = A(J,K) + S * RV1(K)
  194. 260 CONTINUE
  195. C
  196. 270 DO 280 K = L, N
  197. 280 A(I,K) = SCALE * A(I,K)
  198. C
  199. 290 S1 = MAX(S1,ABS(W(I))+ABS(RV1(I)))
  200. 300 CONTINUE
  201. C .......... ACCUMULATION OF RIGHT-HAND TRANSFORMATIONS.
  202. C FOR I=N STEP -1 UNTIL 1 DO -- ..........
  203. DO 400 II = 1, N
  204. I = N + 1 - II
  205. IF (I .EQ. N) GO TO 390
  206. IF (G .EQ. 0.0E0) GO TO 360
  207. C
  208. DO 320 J = L, N
  209. C .......... DOUBLE DIVISION AVOIDS POSSIBLE UNDERFLOW ..........
  210. 320 A(J,I) = (A(I,J) / A(I,L)) / G
  211. C
  212. DO 350 J = L, N
  213. S = 0.0E0
  214. C
  215. DO 340 K = L, N
  216. 340 S = S + A(I,K) * A(K,J)
  217. C
  218. DO 350 K = L, N
  219. A(K,J) = A(K,J) + S * A(K,I)
  220. 350 CONTINUE
  221. C
  222. 360 DO 380 J = L, N
  223. A(I,J) = 0.0E0
  224. A(J,I) = 0.0E0
  225. 380 CONTINUE
  226. C
  227. 390 A(I,I) = 1.0E0
  228. G = RV1(I)
  229. L = I
  230. 400 CONTINUE
  231. C
  232. IF (M .GE. N .OR. IP .EQ. 0) GO TO 510
  233. M1 = M + 1
  234. C
  235. DO 500 I = M1, N
  236. C
  237. DO 500 J = 1, IP
  238. B(I,J) = 0.0E0
  239. 500 CONTINUE
  240. C .......... DIAGONALIZATION OF THE BIDIAGONAL FORM ..........
  241. 510 CONTINUE
  242. C .......... FOR K=N STEP -1 UNTIL 1 DO -- ..........
  243. DO 700 KK = 1, N
  244. K1 = N - KK
  245. K = K1 + 1
  246. ITS = 0
  247. C .......... TEST FOR SPLITTING.
  248. C FOR L=K STEP -1 UNTIL 1 DO -- ..........
  249. 520 DO 530 LL = 1, K
  250. L1 = K - LL
  251. L = L1 + 1
  252. IF (S1 + ABS(RV1(L)) .EQ. S1) GO TO 565
  253. C .......... RV1(1) IS ALWAYS ZERO, SO THERE IS NO EXIT
  254. C THROUGH THE BOTTOM OF THE LOOP ..........
  255. IF (S1 + ABS(W(L1)) .EQ. S1) GO TO 540
  256. 530 CONTINUE
  257. C .......... CANCELLATION OF RV1(L) IF L GREATER THAN 1 ..........
  258. 540 C = 0.0E0
  259. S = 1.0E0
  260. C
  261. DO 560 I = L, K
  262. F = S * RV1(I)
  263. RV1(I) = C * RV1(I)
  264. IF (S1 + ABS(F) .EQ. S1) GO TO 565
  265. G = W(I)
  266. H = PYTHAG(F,G)
  267. W(I) = H
  268. C = G / H
  269. S = -F / H
  270. IF (IP .EQ. 0) GO TO 560
  271. C
  272. DO 550 J = 1, IP
  273. Y = B(L1,J)
  274. Z = B(I,J)
  275. B(L1,J) = Y * C + Z * S
  276. B(I,J) = -Y * S + Z * C
  277. 550 CONTINUE
  278. C
  279. 560 CONTINUE
  280. C .......... TEST FOR CONVERGENCE ..........
  281. 565 Z = W(K)
  282. IF (L .EQ. K) GO TO 650
  283. C .......... SHIFT FROM BOTTOM 2 BY 2 MINOR ..........
  284. IF (ITS .EQ. 30) GO TO 1000
  285. ITS = ITS + 1
  286. X = W(L)
  287. Y = W(K1)
  288. G = RV1(K1)
  289. H = RV1(K)
  290. F = 0.5E0 * (((G + Z) / H) * ((G - Z) / Y) + Y / H - H / Y)
  291. G = PYTHAG(F,1.0E0)
  292. F = X - (Z / X) * Z + (H / X) * (Y / (F + SIGN(G,F)) - H)
  293. C .......... NEXT QR TRANSFORMATION ..........
  294. C = 1.0E0
  295. S = 1.0E0
  296. C
  297. DO 600 I1 = L, K1
  298. I = I1 + 1
  299. G = RV1(I)
  300. Y = W(I)
  301. H = S * G
  302. G = C * G
  303. Z = PYTHAG(F,H)
  304. RV1(I1) = Z
  305. C = F / Z
  306. S = H / Z
  307. F = X * C + G * S
  308. G = -X * S + G * C
  309. H = Y * S
  310. Y = Y * C
  311. C
  312. DO 570 J = 1, N
  313. X = A(J,I1)
  314. Z = A(J,I)
  315. A(J,I1) = X * C + Z * S
  316. A(J,I) = -X * S + Z * C
  317. 570 CONTINUE
  318. C
  319. Z = PYTHAG(F,H)
  320. W(I1) = Z
  321. C .......... ROTATION CAN BE ARBITRARY IF Z IS ZERO ..........
  322. IF (Z .EQ. 0.0E0) GO TO 580
  323. C = F / Z
  324. S = H / Z
  325. 580 F = C * G + S * Y
  326. X = -S * G + C * Y
  327. IF (IP .EQ. 0) GO TO 600
  328. C
  329. DO 590 J = 1, IP
  330. Y = B(I1,J)
  331. Z = B(I,J)
  332. B(I1,J) = Y * C + Z * S
  333. B(I,J) = -Y * S + Z * C
  334. 590 CONTINUE
  335. C
  336. 600 CONTINUE
  337. C
  338. RV1(L) = 0.0E0
  339. RV1(K) = F
  340. W(K) = X
  341. GO TO 520
  342. C .......... CONVERGENCE ..........
  343. 650 IF (Z .GE. 0.0E0) GO TO 700
  344. C .......... W(K) IS MADE NON-NEGATIVE ..........
  345. W(K) = -Z
  346. C
  347. DO 690 J = 1, N
  348. 690 A(J,K) = -A(J,K)
  349. C
  350. 700 CONTINUE
  351. C
  352. GO TO 1001
  353. C .......... SET ERROR -- NO CONVERGENCE TO A
  354. C SINGULAR VALUE AFTER 30 ITERATIONS ..........
  355. 1000 IERR = K
  356. 1001 RETURN
  357. END