123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- *DECK ORTHES
- SUBROUTINE ORTHES (NM, N, LOW, IGH, A, ORT)
- C***BEGIN PROLOGUE ORTHES
- C***PURPOSE Reduce a real general matrix to upper Hessenberg form
- C using orthogonal similarity transformations.
- C***LIBRARY SLATEC (EISPACK)
- C***CATEGORY D4C1B2
- C***TYPE SINGLE PRECISION (ORTHES-S, CORTH-C)
- C***KEYWORDS EIGENVALUES, EIGENVECTORS, EISPACK
- C***AUTHOR Smith, B. T., et al.
- C***DESCRIPTION
- C
- C This subroutine is a translation of the ALGOL procedure ORTHES,
- C NUM. MATH. 12, 349-368(1968) by Martin and Wilkinson.
- C HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).
- C
- C Given a REAL GENERAL matrix, this subroutine
- C reduces a submatrix situated in rows and columns
- C LOW through IGH to upper Hessenberg form by
- C orthogonal similarity transformations.
- C
- C On INPUT
- C
- C NM must be set to the row dimension of the two-dimensional
- C array parameter, A, as declared in the calling program
- C dimension statement. NM is an INTEGER variable.
- C
- C N is the order of the matrix A. N is an INTEGER variable.
- C N must be less than or equal to NM.
- C
- C LOW and IGH are two INTEGER variables determined by the
- C balancing subroutine BALANC. If BALANC has not been
- C used, set LOW=1 and IGH equal to the order of the matrix, N.
- C
- C A contains the general matrix to be reduced to upper
- C Hessenberg form. A is a two-dimensional REAL array,
- C dimensioned A(NM,N).
- C
- C On OUTPUT
- C
- C A contains the upper Hessenberg matrix. Some information about
- C the orthogonal transformations used in the reduction
- C is stored in the remaining triangle under the Hessenberg
- C matrix.
- C
- C ORT contains further information about the orthogonal trans-
- C formations used in the reduction. Only elements LOW+1
- C through IGH are used. ORT is a one-dimensional REAL array,
- C dimensioned ORT(IGH).
- C
- C Questions and comments should be directed to B. S. Garbow,
- C APPLIED MATHEMATICS DIVISION, ARGONNE NATIONAL LABORATORY
- C ------------------------------------------------------------------
- C
- C***REFERENCES B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
- C Y. Ikebe, V. C. Klema and C. B. Moler, Matrix Eigen-
- C system Routines - EISPACK Guide, Springer-Verlag,
- C 1976.
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 760101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 920501 Reformatted the REFERENCES section. (WRB)
- C***END PROLOGUE ORTHES
- C
- INTEGER I,J,M,N,II,JJ,LA,MP,NM,IGH,KP1,LOW
- REAL A(NM,*),ORT(*)
- REAL F,G,H,SCALE
- C
- C***FIRST EXECUTABLE STATEMENT ORTHES
- LA = IGH - 1
- KP1 = LOW + 1
- IF (LA .LT. KP1) GO TO 200
- C
- DO 180 M = KP1, LA
- H = 0.0E0
- ORT(M) = 0.0E0
- SCALE = 0.0E0
- C .......... SCALE COLUMN (ALGOL TOL THEN NOT NEEDED) ..........
- DO 90 I = M, IGH
- 90 SCALE = SCALE + ABS(A(I,M-1))
- C
- IF (SCALE .EQ. 0.0E0) GO TO 180
- MP = M + IGH
- C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
- DO 100 II = M, IGH
- I = MP - II
- ORT(I) = A(I,M-1) / SCALE
- H = H + ORT(I) * ORT(I)
- 100 CONTINUE
- C
- G = -SIGN(SQRT(H),ORT(M))
- H = H - ORT(M) * G
- ORT(M) = ORT(M) - G
- C .......... FORM (I-(U*UT)/H) * A ..........
- DO 130 J = M, N
- F = 0.0E0
- C .......... FOR I=IGH STEP -1 UNTIL M DO -- ..........
- DO 110 II = M, IGH
- I = MP - II
- F = F + ORT(I) * A(I,J)
- 110 CONTINUE
- C
- F = F / H
- C
- DO 120 I = M, IGH
- 120 A(I,J) = A(I,J) - F * ORT(I)
- C
- 130 CONTINUE
- C .......... FORM (I-(U*UT)/H)*A*(I-(U*UT)/H) ..........
- DO 160 I = 1, IGH
- F = 0.0E0
- C .......... FOR J=IGH STEP -1 UNTIL M DO -- ..........
- DO 140 JJ = M, IGH
- J = MP - JJ
- F = F + ORT(J) * A(I,J)
- 140 CONTINUE
- C
- F = F / H
- C
- DO 150 J = M, IGH
- 150 A(I,J) = A(I,J) - F * ORT(J)
- C
- 160 CONTINUE
- C
- ORT(M) = SCALE * ORT(M)
- A(M,M-1) = SCALE * G
- 180 CONTINUE
- C
- 200 RETURN
- END
|