pchsp.f 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. *DECK PCHSP
  2. SUBROUTINE PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
  3. C***BEGIN PROLOGUE PCHSP
  4. C***PURPOSE Set derivatives needed to determine the Hermite represen-
  5. C tation of the cubic spline interpolant to given data, with
  6. C specified boundary conditions.
  7. C***LIBRARY SLATEC (PCHIP)
  8. C***CATEGORY E1A
  9. C***TYPE SINGLE PRECISION (PCHSP-S, DPCHSP-D)
  10. C***KEYWORDS CUBIC HERMITE INTERPOLATION, PCHIP,
  11. C PIECEWISE CUBIC INTERPOLATION, SPLINE INTERPOLATION
  12. C***AUTHOR Fritsch, F. N., (LLNL)
  13. C Lawrence Livermore National Laboratory
  14. C P.O. Box 808 (L-316)
  15. C Livermore, CA 94550
  16. C FTS 532-4275, (510) 422-4275
  17. C***DESCRIPTION
  18. C
  19. C PCHSP: Piecewise Cubic Hermite Spline
  20. C
  21. C Computes the Hermite representation of the cubic spline inter-
  22. C polant to the data given in X and F satisfying the boundary
  23. C conditions specified by IC and VC.
  24. C
  25. C To facilitate two-dimensional applications, includes an increment
  26. C between successive values of the F- and D-arrays.
  27. C
  28. C The resulting piecewise cubic Hermite function may be evaluated
  29. C by PCHFE or PCHFD.
  30. C
  31. C NOTE: This is a modified version of C. de Boor's cubic spline
  32. C routine CUBSPL.
  33. C
  34. C ----------------------------------------------------------------------
  35. C
  36. C Calling sequence:
  37. C
  38. C PARAMETER (INCFD = ...)
  39. C INTEGER IC(2), N, NWK, IERR
  40. C REAL VC(2), X(N), F(INCFD,N), D(INCFD,N), WK(NWK)
  41. C
  42. C CALL PCHSP (IC, VC, N, X, F, D, INCFD, WK, NWK, IERR)
  43. C
  44. C Parameters:
  45. C
  46. C IC -- (input) integer array of length 2 specifying desired
  47. C boundary conditions:
  48. C IC(1) = IBEG, desired condition at beginning of data.
  49. C IC(2) = IEND, desired condition at end of data.
  50. C
  51. C IBEG = 0 to set D(1) so that the third derivative is con-
  52. C tinuous at X(2). This is the "not a knot" condition
  53. C provided by de Boor's cubic spline routine CUBSPL.
  54. C < This is the default boundary condition. >
  55. C IBEG = 1 if first derivative at X(1) is given in VC(1).
  56. C IBEG = 2 if second derivative at X(1) is given in VC(1).
  57. C IBEG = 3 to use the 3-point difference formula for D(1).
  58. C (Reverts to the default b.c. if N.LT.3 .)
  59. C IBEG = 4 to use the 4-point difference formula for D(1).
  60. C (Reverts to the default b.c. if N.LT.4 .)
  61. C NOTES:
  62. C 1. An error return is taken if IBEG is out of range.
  63. C 2. For the "natural" boundary condition, use IBEG=2 and
  64. C VC(1)=0.
  65. C
  66. C IEND may take on the same values as IBEG, but applied to
  67. C derivative at X(N). In case IEND = 1 or 2, the value is
  68. C given in VC(2).
  69. C
  70. C NOTES:
  71. C 1. An error return is taken if IEND is out of range.
  72. C 2. For the "natural" boundary condition, use IEND=2 and
  73. C VC(2)=0.
  74. C
  75. C VC -- (input) real array of length 2 specifying desired boundary
  76. C values, as indicated above.
  77. C VC(1) need be set only if IC(1) = 1 or 2 .
  78. C VC(2) need be set only if IC(2) = 1 or 2 .
  79. C
  80. C N -- (input) number of data points. (Error return if N.LT.2 .)
  81. C
  82. C X -- (input) real array of independent variable values. The
  83. C elements of X must be strictly increasing:
  84. C X(I-1) .LT. X(I), I = 2(1)N.
  85. C (Error return if not.)
  86. C
  87. C F -- (input) real array of dependent variable values to be inter-
  88. C polated. F(1+(I-1)*INCFD) is value corresponding to X(I).
  89. C
  90. C D -- (output) real array of derivative values at the data points.
  91. C These values will determine the cubic spline interpolant
  92. C with the requested boundary conditions.
  93. C The value corresponding to X(I) is stored in
  94. C D(1+(I-1)*INCFD), I=1(1)N.
  95. C No other entries in D are changed.
  96. C
  97. C INCFD -- (input) increment between successive values in F and D.
  98. C This argument is provided primarily for 2-D applications.
  99. C (Error return if INCFD.LT.1 .)
  100. C
  101. C WK -- (scratch) real array of working storage.
  102. C
  103. C NWK -- (input) length of work array.
  104. C (Error return if NWK.LT.2*N .)
  105. C
  106. C IERR -- (output) error flag.
  107. C Normal return:
  108. C IERR = 0 (no errors).
  109. C "Recoverable" errors:
  110. C IERR = -1 if N.LT.2 .
  111. C IERR = -2 if INCFD.LT.1 .
  112. C IERR = -3 if the X-array is not strictly increasing.
  113. C IERR = -4 if IBEG.LT.0 or IBEG.GT.4 .
  114. C IERR = -5 if IEND.LT.0 of IEND.GT.4 .
  115. C IERR = -6 if both of the above are true.
  116. C IERR = -7 if NWK is too small.
  117. C NOTE: The above errors are checked in the order listed,
  118. C and following arguments have **NOT** been validated.
  119. C (The D-array has not been changed in any of these cases.)
  120. C IERR = -8 in case of trouble solving the linear system
  121. C for the interior derivative values.
  122. C (The D-array may have been changed in this case.)
  123. C ( Do **NOT** use it! )
  124. C
  125. C***REFERENCES Carl de Boor, A Practical Guide to Splines, Springer-
  126. C Verlag, New York, 1978, pp. 53-59.
  127. C***ROUTINES CALLED PCHDF, XERMSG
  128. C***REVISION HISTORY (YYMMDD)
  129. C 820503 DATE WRITTEN
  130. C 820804 Converted to SLATEC library version.
  131. C 870707 Minor cosmetic changes to prologue.
  132. C 890411 Added SAVE statements (Vers. 3.2).
  133. C 890703 Corrected category record. (WRB)
  134. C 890831 Modified array declarations. (WRB)
  135. C 890831 REVISION DATE from Version 3.2
  136. C 891214 Prologue converted to Version 4.0 format. (BAB)
  137. C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
  138. C 920429 Revised format and order of references. (WRB,FNF)
  139. C***END PROLOGUE PCHSP
  140. C Programming notes:
  141. C
  142. C To produce a double precision version, simply:
  143. C a. Change PCHSP to DPCHSP wherever it occurs,
  144. C b. Change the real declarations to double precision, and
  145. C c. Change the constants ZERO, HALF, ... to double precision.
  146. C
  147. C DECLARE ARGUMENTS.
  148. C
  149. INTEGER IC(2), N, INCFD, NWK, IERR
  150. REAL VC(2), X(*), F(INCFD,*), D(INCFD,*), WK(2,*)
  151. C
  152. C DECLARE LOCAL VARIABLES.
  153. C
  154. INTEGER IBEG, IEND, INDEX, J, NM1
  155. REAL G, HALF, ONE, STEMP(3), THREE, TWO, XTEMP(4), ZERO
  156. SAVE ZERO, HALF, ONE, TWO, THREE
  157. REAL PCHDF
  158. C
  159. DATA ZERO /0./, HALF /0.5/, ONE /1./, TWO /2./, THREE /3./
  160. C
  161. C VALIDITY-CHECK ARGUMENTS.
  162. C
  163. C***FIRST EXECUTABLE STATEMENT PCHSP
  164. IF ( N.LT.2 ) GO TO 5001
  165. IF ( INCFD.LT.1 ) GO TO 5002
  166. DO 1 J = 2, N
  167. IF ( X(J).LE.X(J-1) ) GO TO 5003
  168. 1 CONTINUE
  169. C
  170. IBEG = IC(1)
  171. IEND = IC(2)
  172. IERR = 0
  173. IF ( (IBEG.LT.0).OR.(IBEG.GT.4) ) IERR = IERR - 1
  174. IF ( (IEND.LT.0).OR.(IEND.GT.4) ) IERR = IERR - 2
  175. IF ( IERR.LT.0 ) GO TO 5004
  176. C
  177. C FUNCTION DEFINITION IS OK -- GO ON.
  178. C
  179. IF ( NWK .LT. 2*N ) GO TO 5007
  180. C
  181. C COMPUTE FIRST DIFFERENCES OF X SEQUENCE AND STORE IN WK(1,.). ALSO,
  182. C COMPUTE FIRST DIVIDED DIFFERENCE OF DATA AND STORE IN WK(2,.).
  183. DO 5 J=2,N
  184. WK(1,J) = X(J) - X(J-1)
  185. WK(2,J) = (F(1,J) - F(1,J-1))/WK(1,J)
  186. 5 CONTINUE
  187. C
  188. C SET TO DEFAULT BOUNDARY CONDITIONS IF N IS TOO SMALL.
  189. C
  190. IF ( IBEG.GT.N ) IBEG = 0
  191. IF ( IEND.GT.N ) IEND = 0
  192. C
  193. C SET UP FOR BOUNDARY CONDITIONS.
  194. C
  195. IF ( (IBEG.EQ.1).OR.(IBEG.EQ.2) ) THEN
  196. D(1,1) = VC(1)
  197. ELSE IF (IBEG .GT. 2) THEN
  198. C PICK UP FIRST IBEG POINTS, IN REVERSE ORDER.
  199. DO 10 J = 1, IBEG
  200. INDEX = IBEG-J+1
  201. C INDEX RUNS FROM IBEG DOWN TO 1.
  202. XTEMP(J) = X(INDEX)
  203. IF (J .LT. IBEG) STEMP(J) = WK(2,INDEX)
  204. 10 CONTINUE
  205. C --------------------------------
  206. D(1,1) = PCHDF (IBEG, XTEMP, STEMP, IERR)
  207. C --------------------------------
  208. IF (IERR .NE. 0) GO TO 5009
  209. IBEG = 1
  210. ENDIF
  211. C
  212. IF ( (IEND.EQ.1).OR.(IEND.EQ.2) ) THEN
  213. D(1,N) = VC(2)
  214. ELSE IF (IEND .GT. 2) THEN
  215. C PICK UP LAST IEND POINTS.
  216. DO 15 J = 1, IEND
  217. INDEX = N-IEND+J
  218. C INDEX RUNS FROM N+1-IEND UP TO N.
  219. XTEMP(J) = X(INDEX)
  220. IF (J .LT. IEND) STEMP(J) = WK(2,INDEX+1)
  221. 15 CONTINUE
  222. C --------------------------------
  223. D(1,N) = PCHDF (IEND, XTEMP, STEMP, IERR)
  224. C --------------------------------
  225. IF (IERR .NE. 0) GO TO 5009
  226. IEND = 1
  227. ENDIF
  228. C
  229. C --------------------( BEGIN CODING FROM CUBSPL )--------------------
  230. C
  231. C **** A TRIDIAGONAL LINEAR SYSTEM FOR THE UNKNOWN SLOPES S(J) OF
  232. C F AT X(J), J=1,...,N, IS GENERATED AND THEN SOLVED BY GAUSS ELIM-
  233. C INATION, WITH S(J) ENDING UP IN D(1,J), ALL J.
  234. C WK(1,.) AND WK(2,.) ARE USED FOR TEMPORARY STORAGE.
  235. C
  236. C CONSTRUCT FIRST EQUATION FROM FIRST BOUNDARY CONDITION, OF THE FORM
  237. C WK(2,1)*S(1) + WK(1,1)*S(2) = D(1,1)
  238. C
  239. IF (IBEG .EQ. 0) THEN
  240. IF (N .EQ. 2) THEN
  241. C NO CONDITION AT LEFT END AND N = 2.
  242. WK(2,1) = ONE
  243. WK(1,1) = ONE
  244. D(1,1) = TWO*WK(2,2)
  245. ELSE
  246. C NOT-A-KNOT CONDITION AT LEFT END AND N .GT. 2.
  247. WK(2,1) = WK(1,3)
  248. WK(1,1) = WK(1,2) + WK(1,3)
  249. D(1,1) =((WK(1,2) + TWO*WK(1,1))*WK(2,2)*WK(1,3)
  250. * + WK(1,2)**2*WK(2,3)) / WK(1,1)
  251. ENDIF
  252. ELSE IF (IBEG .EQ. 1) THEN
  253. C SLOPE PRESCRIBED AT LEFT END.
  254. WK(2,1) = ONE
  255. WK(1,1) = ZERO
  256. ELSE
  257. C SECOND DERIVATIVE PRESCRIBED AT LEFT END.
  258. WK(2,1) = TWO
  259. WK(1,1) = ONE
  260. D(1,1) = THREE*WK(2,2) - HALF*WK(1,2)*D(1,1)
  261. ENDIF
  262. C
  263. C IF THERE ARE INTERIOR KNOTS, GENERATE THE CORRESPONDING EQUATIONS AND
  264. C CARRY OUT THE FORWARD PASS OF GAUSS ELIMINATION, AFTER WHICH THE J-TH
  265. C EQUATION READS WK(2,J)*S(J) + WK(1,J)*S(J+1) = D(1,J).
  266. C
  267. NM1 = N-1
  268. IF (NM1 .GT. 1) THEN
  269. DO 20 J=2,NM1
  270. IF (WK(2,J-1) .EQ. ZERO) GO TO 5008
  271. G = -WK(1,J+1)/WK(2,J-1)
  272. D(1,J) = G*D(1,J-1)
  273. * + THREE*(WK(1,J)*WK(2,J+1) + WK(1,J+1)*WK(2,J))
  274. WK(2,J) = G*WK(1,J-1) + TWO*(WK(1,J) + WK(1,J+1))
  275. 20 CONTINUE
  276. ENDIF
  277. C
  278. C CONSTRUCT LAST EQUATION FROM SECOND BOUNDARY CONDITION, OF THE FORM
  279. C (-G*WK(2,N-1))*S(N-1) + WK(2,N)*S(N) = D(1,N)
  280. C
  281. C IF SLOPE IS PRESCRIBED AT RIGHT END, ONE CAN GO DIRECTLY TO BACK-
  282. C SUBSTITUTION, SINCE ARRAYS HAPPEN TO BE SET UP JUST RIGHT FOR IT
  283. C AT THIS POINT.
  284. IF (IEND .EQ. 1) GO TO 30
  285. C
  286. IF (IEND .EQ. 0) THEN
  287. IF (N.EQ.2 .AND. IBEG.EQ.0) THEN
  288. C NOT-A-KNOT AT RIGHT ENDPOINT AND AT LEFT ENDPOINT AND N = 2.
  289. D(1,2) = WK(2,2)
  290. GO TO 30
  291. ELSE IF ((N.EQ.2) .OR. (N.EQ.3 .AND. IBEG.EQ.0)) THEN
  292. C EITHER (N=3 AND NOT-A-KNOT ALSO AT LEFT) OR (N=2 AND *NOT*
  293. C NOT-A-KNOT AT LEFT END POINT).
  294. D(1,N) = TWO*WK(2,N)
  295. WK(2,N) = ONE
  296. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  297. G = -ONE/WK(2,N-1)
  298. ELSE
  299. C NOT-A-KNOT AND N .GE. 3, AND EITHER N.GT.3 OR ALSO NOT-A-
  300. C KNOT AT LEFT END POINT.
  301. G = WK(1,N-1) + WK(1,N)
  302. C DO NOT NEED TO CHECK FOLLOWING DENOMINATORS (X-DIFFERENCES).
  303. D(1,N) = ((WK(1,N)+TWO*G)*WK(2,N)*WK(1,N-1)
  304. * + WK(1,N)**2*(F(1,N-1)-F(1,N-2))/WK(1,N-1))/G
  305. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  306. G = -G/WK(2,N-1)
  307. WK(2,N) = WK(1,N-1)
  308. ENDIF
  309. ELSE
  310. C SECOND DERIVATIVE PRESCRIBED AT RIGHT ENDPOINT.
  311. D(1,N) = THREE*WK(2,N) + HALF*WK(1,N)*D(1,N)
  312. WK(2,N) = TWO
  313. IF (WK(2,N-1) .EQ. ZERO) GO TO 5008
  314. G = -ONE/WK(2,N-1)
  315. ENDIF
  316. C
  317. C COMPLETE FORWARD PASS OF GAUSS ELIMINATION.
  318. C
  319. WK(2,N) = G*WK(1,N-1) + WK(2,N)
  320. IF (WK(2,N) .EQ. ZERO) GO TO 5008
  321. D(1,N) = (G*D(1,N-1) + D(1,N))/WK(2,N)
  322. C
  323. C CARRY OUT BACK SUBSTITUTION
  324. C
  325. 30 CONTINUE
  326. DO 40 J=NM1,1,-1
  327. IF (WK(2,J) .EQ. ZERO) GO TO 5008
  328. D(1,J) = (D(1,J) - WK(1,J)*D(1,J+1))/WK(2,J)
  329. 40 CONTINUE
  330. C --------------------( END CODING FROM CUBSPL )--------------------
  331. C
  332. C NORMAL RETURN.
  333. C
  334. RETURN
  335. C
  336. C ERROR RETURNS.
  337. C
  338. 5001 CONTINUE
  339. C N.LT.2 RETURN.
  340. IERR = -1
  341. CALL XERMSG ('SLATEC', 'PCHSP',
  342. + 'NUMBER OF DATA POINTS LESS THAN TWO', IERR, 1)
  343. RETURN
  344. C
  345. 5002 CONTINUE
  346. C INCFD.LT.1 RETURN.
  347. IERR = -2
  348. CALL XERMSG ('SLATEC', 'PCHSP', 'INCREMENT LESS THAN ONE', IERR,
  349. + 1)
  350. RETURN
  351. C
  352. 5003 CONTINUE
  353. C X-ARRAY NOT STRICTLY INCREASING.
  354. IERR = -3
  355. CALL XERMSG ('SLATEC', 'PCHSP', 'X-ARRAY NOT STRICTLY INCREASING'
  356. + , IERR, 1)
  357. RETURN
  358. C
  359. 5004 CONTINUE
  360. C IC OUT OF RANGE RETURN.
  361. IERR = IERR - 3
  362. CALL XERMSG ('SLATEC', 'PCHSP', 'IC OUT OF RANGE', IERR, 1)
  363. RETURN
  364. C
  365. 5007 CONTINUE
  366. C NWK TOO SMALL RETURN.
  367. IERR = -7
  368. CALL XERMSG ('SLATEC', 'PCHSP', 'WORK ARRAY TOO SMALL', IERR, 1)
  369. RETURN
  370. C
  371. 5008 CONTINUE
  372. C SINGULAR SYSTEM.
  373. C *** THEORETICALLY, THIS CAN ONLY OCCUR IF SUCCESSIVE X-VALUES ***
  374. C *** ARE EQUAL, WHICH SHOULD ALREADY HAVE BEEN CAUGHT (IERR=-3). ***
  375. IERR = -8
  376. CALL XERMSG ('SLATEC', 'PCHSP', 'SINGULAR LINEAR SYSTEM', IERR,
  377. + 1)
  378. RETURN
  379. C
  380. 5009 CONTINUE
  381. C ERROR RETURN FROM PCHDF.
  382. C *** THIS CASE SHOULD NEVER OCCUR ***
  383. IERR = -9
  384. CALL XERMSG ('SLATEC', 'PCHSP', 'ERROR RETURN FROM PCHDF', IERR,
  385. + 1)
  386. RETURN
  387. C------------- LAST LINE OF PCHSP FOLLOWS ------------------------------
  388. END