123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145 |
- *DECK POCH1
- FUNCTION POCH1 (A, X)
- C***BEGIN PROLOGUE POCH1
- C***PURPOSE Calculate a generalization of Pochhammer's symbol starting
- C from first order.
- C***LIBRARY SLATEC (FNLIB)
- C***CATEGORY C1, C7A
- C***TYPE SINGLE PRECISION (POCH1-S, DPOCH1-D)
- C***KEYWORDS FIRST ORDER, FNLIB, POCHHAMMER, SPECIAL FUNCTIONS
- C***AUTHOR Fullerton, W., (LANL)
- C***DESCRIPTION
- C
- C Evaluate a generalization of Pochhammer's symbol for special
- C situations that require especially accurate values when X is small in
- C POCH1(A,X) = (POCH(A,X)-1)/X
- C = (GAMMA(A+X)/GAMMA(A) - 1.0)/X .
- C This specification is particularly suited for stably computing
- C expressions such as
- C (GAMMA(A+X)/GAMMA(A) - GAMMA(B+X)/GAMMA(B))/X
- C = POCH1(A,X) - POCH1(B,X)
- C Note that POCH1(A,0.0) = PSI(A)
- C
- C When ABS(X) is so small that substantial cancellation will occur if
- C the straightforward formula is used, we use an expansion due
- C to Fields and discussed by Y. L. Luke, The Special Functions and Their
- C Approximations, Vol. 1, Academic Press, 1969, page 34.
- C
- C The ratio POCH(A,X) = GAMMA(A+X)/GAMMA(A) is written by Luke as
- C (A+(X-1)/2)**X * polynomial in (A+(X-1)/2)**(-2) .
- C In order to maintain significance in POCH1, we write for positive A
- C (A+(X-1)/2)**X = EXP(X*LOG(A+(X-1)/2)) = EXP(Q)
- C = 1.0 + Q*EXPREL(Q) .
- C Likewise the polynomial is written
- C POLY = 1.0 + X*POLY1(A,X) .
- C Thus,
- C POCH1(A,X) = (POCH(A,X) - 1) / X
- C = EXPREL(Q)*(Q/X + Q*POLY1(A,X)) + POLY1(A,X)
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED COT, EXPREL, POCH, PSI, R1MACH, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 770801 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890531 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C 900727 Added EXTERNAL statement. (WRB)
- C***END PROLOGUE POCH1
- DIMENSION BERN(9), GBERN(10)
- LOGICAL FIRST
- EXTERNAL COT
- SAVE BERN, PI, SQTBIG, ALNEPS, FIRST
- DATA BERN( 1) / .8333333333 3333333E-01 /
- DATA BERN( 2) / -.1388888888 8888889E-02 /
- DATA BERN( 3) / .3306878306 8783069E-04 /
- DATA BERN( 4) / -.8267195767 1957672E-06 /
- DATA BERN( 5) / .2087675698 7868099E-07 /
- DATA BERN( 6) / -.5284190138 6874932E-09 /
- DATA BERN( 7) / .1338253653 0684679E-10 /
- DATA BERN( 8) / -.3389680296 3225829E-12 /
- DATA BERN( 9) / .8586062056 2778446E-14 /
- DATA PI / 3.1415926535 8979324 E0 /
- DATA FIRST /.TRUE./
- C***FIRST EXECUTABLE STATEMENT POCH1
- IF (FIRST) THEN
- SQTBIG = 1.0/SQRT(24.0*R1MACH(1))
- ALNEPS = LOG(R1MACH(3))
- ENDIF
- FIRST = .FALSE.
- C
- IF (X.EQ.0.0) POCH1 = PSI(A)
- IF (X.EQ.0.0) RETURN
- C
- ABSX = ABS(X)
- ABSA = ABS(A)
- IF (ABSX.GT.0.1*ABSA) GO TO 70
- IF (ABSX*LOG(MAX(ABSA,2.0)).GT.0.1) GO TO 70
- C
- BP = A
- IF (A.LT.(-0.5)) BP = 1.0 - A - X
- INCR = 0
- IF (BP.LT.10.0) INCR = 11.0 - BP
- B = BP + INCR
- C
- VAR = B + 0.5*(X-1.0)
- ALNVAR = LOG(VAR)
- Q = X*ALNVAR
- C
- POLY1 = 0.0
- IF (VAR.GE.SQTBIG) GO TO 40
- VAR2 = (1.0/VAR)**2
- C
- RHO = 0.5*(X+1.0)
- GBERN(1) = 1.0
- GBERN(2) = -RHO/12.0
- TERM = VAR2
- POLY1 = GBERN(2)*TERM
- C
- NTERMS = -0.5*ALNEPS/ALNVAR + 1.0
- IF (NTERMS .GT. 9) CALL XERMSG ('SLATEC', 'POCH1',
- + 'NTERMS IS TOO BIG, MAYBE R1MACH(3) IS BAD', 1, 2)
- IF (NTERMS.LT.2) GO TO 40
- C
- DO 30 K=2,NTERMS
- GBK = 0.0
- DO 20 J=1,K
- NDX = K - J + 1
- GBK = GBK + BERN(NDX)*GBERN(J)
- 20 CONTINUE
- GBERN(K+1) = -RHO*GBK/K
- C
- TERM = TERM * (2*K-2.-X)*(2*K-1.-X)*VAR2
- POLY1 = POLY1 + GBERN(K+1)*TERM
- 30 CONTINUE
- C
- 40 POLY1 = (X-1.0)*POLY1
- POCH1 = EXPREL(Q)*(ALNVAR + Q*POLY1) + POLY1
- C
- IF (INCR.EQ.0) GO TO 60
- C
- C WE HAVE POCH1(B,X). BUT BP IS SMALL, SO WE USE BACKWARDS RECURSION
- C TO OBTAIN POCH1(BP,X).
- C
- DO 50 II=1,INCR
- I = INCR - II
- BINV = 1.0/(BP+I)
- POCH1 = (POCH1-BINV)/(1.0+X*BINV)
- 50 CONTINUE
- C
- 60 IF (BP.EQ.A) RETURN
- C
- C WE HAVE POCH1(BP,X), BUT A IS LT -0.5. WE THEREFORE USE A REFLECTION
- C FORMULA TO OBTAIN POCH1(A,X).
- C
- SINPXX = SIN(PI*X)/X
- SINPX2 = SIN(0.5*PI*X)
- TRIG = SINPXX*COT(PI*B) - 2.0*SINPX2*(SINPX2/X)
- C
- POCH1 = TRIG + (1.0 + X*TRIG) * POCH1
- RETURN
- C
- 70 POCH1 = (POCH(A,X) - 1.0) / X
- RETURN
- C
- END
|