123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- *DECK PROCP
- SUBROUTINE PROCP (ND, BD, NM1, BM1, NM2, BM2, NA, AA, X, Y, M, A,
- + B, C, D, U, W)
- C***BEGIN PROLOGUE PROCP
- C***SUBSIDIARY
- C***PURPOSE Subsidiary to CBLKTR
- C***LIBRARY SLATEC
- C***TYPE COMPLEX (PRODP-C, PROCP-C)
- C***AUTHOR (UNKNOWN)
- C***DESCRIPTION
- C
- C PROCP applies a sequence of matrix operations to the vector X and
- C stores the result in Y (periodic boundary conditions).
- C
- C BD,BM1,BM2 are arrays containing roots of certain B polynomials.
- C ND,NM1,NM2 are the lengths of the arrays BD,BM1,BM2 respectively.
- C AA Array containing scalar multipliers of the vector X.
- C NA is the length of the array AA.
- C X,Y The matrix operations are applied to X and the result is Y.
- C A,B,C are arrays which contain the tridiagonal matrix.
- C M is the order of the matrix.
- C D,U,W are working arrays.
- C IS determines whether or not a change in sign is made.
- C
- C***SEE ALSO CBLKTR
- C***ROUTINES CALLED (NONE)
- C***REVISION HISTORY (YYMMDD)
- C 801001 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900402 Added TYPE section. (WRB)
- C***END PROLOGUE PROCP
- C
- DIMENSION A(*) ,B(*) ,C(*) ,X(*) ,
- 1 Y(*) ,D(*) ,U(*) ,BD(*) ,
- 2 BM1(*) ,BM2(*) ,AA(*) ,W(*)
- COMPLEX X ,Y ,A ,B ,
- 1 C ,D ,U ,W ,
- 2 DEN ,YM ,V ,BH ,AM
- C***FIRST EXECUTABLE STATEMENT PROCP
- DO 101 J=1,M
- Y(J) = X(J)
- W(J) = Y(J)
- 101 CONTINUE
- MM = M-1
- MM2 = M-2
- ID = ND
- IBR = 0
- M1 = NM1
- M2 = NM2
- IA = NA
- 102 IF (IA) 105,105,103
- 103 RT = AA(IA)
- IF (ND .EQ. 0) RT = -RT
- IA = IA-1
- DO 104 J=1,M
- Y(J) = RT*W(J)
- 104 CONTINUE
- 105 IF (ID) 128,128,106
- 106 RT = BD(ID)
- ID = ID-1
- IF (ID .EQ. 0) IBR = 1
- C
- C BEGIN SOLUTION TO SYSTEM
- C
- BH = B(M)-RT
- YM = Y(M)
- DEN = B(1)-RT
- D(1) = C(1)/DEN
- U(1) = A(1)/DEN
- W(1) = Y(1)/DEN
- V = C(M)
- IF (MM2-2) 109,107,107
- 107 DO 108 J=2,MM2
- DEN = B(J)-RT-A(J)*D(J-1)
- D(J) = C(J)/DEN
- U(J) = -A(J)*U(J-1)/DEN
- W(J) = (Y(J)-A(J)*W(J-1))/DEN
- BH = BH-V*U(J-1)
- YM = YM-V*W(J-1)
- V = -V*D(J-1)
- 108 CONTINUE
- 109 DEN = B(M-1)-RT-A(M-1)*D(M-2)
- D(M-1) = (C(M-1)-A(M-1)*U(M-2))/DEN
- W(M-1) = (Y(M-1)-A(M-1)*W(M-2))/DEN
- AM = A(M)-V*D(M-2)
- BH = BH-V*U(M-2)
- YM = YM-V*W(M-2)
- DEN = BH-AM*D(M-1)
- IF (ABS(DEN)) 110,111,110
- 110 W(M) = (YM-AM*W(M-1))/DEN
- GO TO 112
- 111 W(M) = (1.,0.)
- 112 W(M-1) = W(M-1)-D(M-1)*W(M)
- DO 113 J=2,MM
- K = M-J
- W(K) = W(K)-D(K)*W(K+1)-U(K)*W(M)
- 113 CONTINUE
- IF (NA) 116,116,102
- 114 DO 115 J=1,M
- Y(J) = W(J)
- 115 CONTINUE
- IBR = 1
- GO TO 102
- 116 IF (M1) 117,117,118
- 117 IF (M2) 114,114,123
- 118 IF (M2) 120,120,119
- 119 IF (ABS(BM1(M1))-ABS(BM2(M2))) 123,123,120
- 120 IF (IBR) 121,121,122
- 121 IF (ABS(BM1(M1)-BD(ID))-ABS(BM1(M1)-RT)) 114,122,122
- 122 RT = RT-BM1(M1)
- M1 = M1-1
- GO TO 126
- 123 IF (IBR) 124,124,125
- 124 IF (ABS(BM2(M2)-BD(ID))-ABS(BM2(M2)-RT)) 114,125,125
- 125 RT = RT-BM2(M2)
- M2 = M2-1
- 126 DO 127 J=1,M
- Y(J) = Y(J)+RT*W(J)
- 127 CONTINUE
- GO TO 102
- 128 RETURN
- END
|