123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- *DECK QAGI
- SUBROUTINE QAGI (F, BOUND, INF, EPSABS, EPSREL, RESULT, ABSERR,
- + NEVAL, IER, LIMIT, LENW, LAST, IWORK, WORK)
- C***BEGIN PROLOGUE QAGI
- C***PURPOSE The routine calculates an approximation result to a given
- C INTEGRAL I = Integral of F over (BOUND,+INFINITY)
- C OR I = Integral of F over (-INFINITY,BOUND)
- C OR I = Integral of F over (-INFINITY,+INFINITY)
- C Hopefully satisfying following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A3A1, H2A4A1
- C***TYPE SINGLE PRECISION (QAGI-S, DQAGI-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
- C GLOBALLY ADAPTIVE, INFINITE INTERVALS, QUADPACK,
- C QUADRATURE, TRANSFORMATION
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Integration over infinite intervals
- C Standard fortran subroutine
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C BOUND - Real
- C Finite bound of integration range
- C (has no meaning if interval is doubly-infinite)
- C
- C INF - Integer
- C indicating the kind of integration range involved
- C INF = 1 corresponds to (BOUND,+INFINITY),
- C INF = -1 to (-INFINITY,BOUND),
- C INF = 2 to (-INFINITY,+INFINITY).
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C - IER.GT.0 abnormal termination of the routine. The
- C estimates for result and error are less
- C reliable. It is assumed that the requested
- C accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more
- C subdivisions by increasing the value of
- C LIMIT (and taking the according dimension
- C adjustments into account). However, if
- C this yields no improvement it is advised
- C to analyze the integrand in order to
- C determine the integration difficulties. If
- C the position of a local difficulty can be
- C determined (e.g. SINGULARITY,
- C DISCONTINUITY within the interval) one
- C will probably gain from splitting up the
- C interval at this point and calling the
- C integrator on the subranges. If possible,
- C an appropriate special-purpose integrator
- C should be used, which is designed for
- C handling the type of difficulty involved.
- C = 2 The occurrence of roundoff error is
- C detected, which prevents the requested
- C tolerance from being achieved.
- C The error may be under-estimated.
- C = 3 Extremely bad integrand behaviour occurs
- C at some points of the integration
- C interval.
- C = 4 The algorithm does not converge.
- C Roundoff error is detected in the
- C extrapolation table.
- C It is assumed that the requested tolerance
- C cannot be achieved, and that the returned
- C RESULT is the best which can be obtained.
- C = 5 The integral is probably divergent, or
- C slowly convergent. It must be noted that
- C divergence can occur with any other value
- C of IER.
- C = 6 The input is invalid, because
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
- C or LIMIT.LT.1 or LENIW.LT.LIMIT*4.
- C RESULT, ABSERR, NEVAL, LAST are set to
- C zero. Except when LIMIT or LENIW is
- C invalid, IWORK(1), WORK(LIMIT*2+1) and
- C WORK(LIMIT*3+1) are set to ZERO, WORK(1)
- C is set to A and WORK(LIMIT+1) to B.
- C
- C DIMENSIONING PARAMETERS
- C LIMIT - Integer
- C Dimensioning parameter for IWORK
- C LIMIT determines the maximum number of subintervals
- C in the partition of the given integration interval
- C (A,B), LIMIT.GE.1.
- C If LIMIT.LT.1, the routine will end with IER = 6.
- C
- C LENW - Integer
- C Dimensioning parameter for WORK
- C LENW must be at least LIMIT*4.
- C If LENW.LT.LIMIT*4, the routine will end
- C with IER = 6.
- C
- C LAST - Integer
- C On return, LAST equals the number of subintervals
- C produced in the subdivision process, which
- C determines the number of significant elements
- C actually in the WORK ARRAYS.
- C
- C WORK ARRAYS
- C IWORK - Integer
- C Vector of dimension at least LIMIT, the first
- C K elements of which contain pointers
- C to the error estimates over the subintervals,
- C such that WORK(LIMIT*3+IWORK(1)),... ,
- C WORK(LIMIT*3+IWORK(K)) form a decreasing
- C sequence, with K = LAST if LAST.LE.(LIMIT/2+2), and
- C K = LIMIT+1-LAST otherwise
- C
- C WORK - Real
- C Vector of dimension at least LENW
- C on return
- C WORK(1), ..., WORK(LAST) contain the left
- C end points of the subintervals in the
- C partition of (A,B),
- C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) Contain
- C the right end points,
- C WORK(LIMIT*2+1), ...,WORK(LIMIT*2+LAST) contain the
- C integral approximations over the subintervals,
- C WORK(LIMIT*3+1), ..., WORK(LIMIT*3)
- C contain the error estimates.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QAGIE, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE QAGI
- C
- REAL ABSERR, EPSABS,EPSREL,F,RESULT,WORK
- INTEGER IER,IWORK, LENW,LIMIT,LVL,L1,L2,L3,NEVAL
- C
- DIMENSION IWORK(*),WORK(*)
- C
- EXTERNAL F
- C
- C CHECK VALIDITY OF LIMIT AND LENW.
- C
- C***FIRST EXECUTABLE STATEMENT QAGI
- IER = 6
- NEVAL = 0
- LAST = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- IF(LIMIT.LT.1.OR.LENW.LT.LIMIT*4) GO TO 10
- C
- C PREPARE CALL FOR QAGIE.
- C
- L1 = LIMIT+1
- L2 = LIMIT+L1
- L3 = LIMIT+L2
- C
- CALL QAGIE(F,BOUND,INF,EPSABS,EPSREL,LIMIT,RESULT,ABSERR,
- 1 NEVAL,IER,WORK(1),WORK(L1),WORK(L2),WORK(L3),IWORK,LAST)
- C
- C CALL ERROR HANDLER IF NECESSARY.
- C
- LVL = 0
- 10 IF(IER.EQ.6) LVL = 1
- IF (IER .NE. 0) CALL XERMSG ('SLATEC', 'QAGI',
- + 'ABNORMAL RETURN', IER, LVL)
- RETURN
- END
|