123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569 |
- *DECK QAGPE
- SUBROUTINE QAGPE (F, A, B, NPTS2, POINTS, EPSABS, EPSREL, LIMIT,
- + RESULT, ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, PTS,
- + IORD, LEVEL, NDIN, LAST)
- C***BEGIN PROLOGUE QAGPE
- C***PURPOSE Approximate a given definite integral I = Integral of F
- C over (A,B), hopefully satisfying the accuracy claim:
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C Break points of the integration interval, where local
- C difficulties of the integrand may occur (e.g. singularities
- C or discontinuities) are provided by the user.
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A2A1
- C***TYPE SINGLE PRECISION (QAGPE-S, DQAGPE-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, EXTRAPOLATION, GENERAL-PURPOSE,
- C GLOBALLY ADAPTIVE, QUADPACK, QUADRATURE,
- C SINGULARITIES AT USER SPECIFIED POINTS
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Computation of a definite integral
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C NPTS2 - Integer
- C Number equal to two more than the number of
- C user-supplied break points within the integration
- C range, NPTS2.GE.2.
- C If NPTS2.LT.2, the routine will end with IER = 6.
- C
- C POINTS - Real
- C Vector of dimension NPTS2, the first (NPTS2-2)
- C elements of which are the user provided break
- C POINTS. If these POINTS do not constitute an
- C ascending sequence there will be an automatic
- C sorting.
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C LIMIT - Integer
- C Gives an upper bound on the number of subintervals
- C in the partition of (A,B), LIMIT.GE.NPTS2
- C If LIMIT.LT.NPTS2, the routine will end with
- C IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine.
- C The estimates for integral and error are
- C less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more
- C subdivisions by increasing the value of
- C LIMIT (and taking the according dimension
- C adjustments into account). However, if
- C this yields no improvement it is advised
- C to analyze the integrand in order to
- C determine the integration difficulties. If
- C the position of a local difficulty can be
- C determined (i.e. SINGULARITY,
- C DISCONTINUITY within the interval), it
- C should be supplied to the routine as an
- C element of the vector points. If necessary
- C an appropriate special-purpose integrator
- C must be used, which is designed for
- C handling the type of difficulty involved.
- C = 2 The occurrence of roundoff error is
- C detected, which prevents the requested
- C tolerance from being achieved.
- C The error may be under-estimated.
- C = 3 Extremely bad integrand behaviour occurs
- C At some points of the integration
- C interval.
- C = 4 The algorithm does not converge.
- C Roundoff error is detected in the
- C extrapolation table. It is presumed that
- C the requested tolerance cannot be
- C achieved, and that the returned result is
- C the best which can be obtained.
- C = 5 The integral is probably divergent, or
- C slowly convergent. It must be noted that
- C divergence can occur with any other value
- C of IER.GT.0.
- C = 6 The input is invalid because
- C NPTS2.LT.2 or
- C Break points are specified outside
- C the integration range or
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
- C or LIMIT.LT.NPTS2.
- C RESULT, ABSERR, NEVAL, LAST, RLIST(1),
- C and ELIST(1) are set to zero. ALIST(1) and
- C BLIST(1) are set to A and B respectively.
- C
- C ALIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the left end points
- C of the subintervals in the partition of the given
- C integration range (A,B)
- C
- C BLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the right end points
- C of the subintervals in the partition of the given
- C integration range (A,B)
- C
- C RLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the integral
- C approximations on the subintervals
- C
- C ELIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the moduli of the
- C absolute error estimates on the subintervals
- C
- C PTS - Real
- C Vector of dimension at least NPTS2, containing the
- C integration limits and the break points of the
- C interval in ascending sequence.
- C
- C LEVEL - Integer
- C Vector of dimension at least LIMIT, containing the
- C subdivision levels of the subinterval, i.e. if
- C (AA,BB) is a subinterval of (P1,P2) where P1 as
- C well as P2 is a user-provided break point or
- C integration limit, then (AA,BB) has level L if
- C ABS(BB-AA) = ABS(P2-P1)*2**(-L).
- C
- C NDIN - Integer
- C Vector of dimension at least NPTS2, after first
- C integration over the intervals (PTS(I)),PTS(I+1),
- C I = 0,1, ..., NPTS2-2, the error estimates over
- C some of the intervals may have been increased
- C artificially, in order to put their subdivision
- C forward. If this happens for the subinterval
- C numbered K, NDIN(K) is put to 1, otherwise
- C NDIN(K) = 0.
- C
- C IORD - Integer
- C Vector of dimension at least LIMIT, the first K
- C elements of which are pointers to the
- C error estimates over the subintervals,
- C such that ELIST(IORD(1)), ..., ELIST(IORD(K))
- C form a decreasing sequence, with K = LAST
- C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
- C otherwise
- C
- C LAST - Integer
- C Number of subintervals actually produced in the
- C subdivisions process
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QELG, QK21, QPSRT, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QAGPE
- REAL A,ABSEPS,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,
- 1 A2,B,BLIST,B1,B2,CORREC,DEFABS,DEFAB1,DEFAB2,
- 2 DRES,R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERLARG,ERLAST,ERRBND,
- 3 ERRMAX,ERROR1,ERRO12,ERROR2,ERRSUM,ERTEST,F,OFLOW,POINTS,PTS,
- 4 RESA,RESABS,RESEPS,RESULT,RES3LA,RLIST,RLIST2,SIGN,TEMP,
- 5 UFLOW
- INTEGER I,ID,IER,IERRO,IND1,IND2,IORD,IP1,IROFF1,IROFF2,
- 1 IROFF3,J,JLOW,JUPBND,K,KSGN,KTMIN,LAST,LEVCUR,LEVEL,LEVMAX,
- 2 LIMIT,MAXERR,NDIN,NEVAL,NINT,NINTP1,NPTS,NPTS2,NRES,
- 3 NRMAX,NUMRL2
- LOGICAL EXTRAP,NOEXT
- C
- C
- DIMENSION ALIST(*),BLIST(*),ELIST(*),IORD(*),
- 1 LEVEL(*),NDIN(*),POINTS(*),PTS(*),RES3LA(3),
- 2 RLIST(*),RLIST2(52)
- C
- EXTERNAL F
- C
- C THE DIMENSION OF RLIST2 IS DETERMINED BY THE VALUE OF
- C LIMEXP IN SUBROUTINE EPSALG (RLIST2 SHOULD BE OF DIMENSION
- C (LIMEXP+2) AT LEAST).
- C
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
- C (ALIST(I),BLIST(I))
- C RLIST2 - ARRAY OF DIMENSION AT LEAST LIMEXP+2
- C CONTAINING THE PART OF THE EPSILON TABLE WHICH
- C IS STILL NEEDED FOR FURTHER COMPUTATIONS
- C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
- C MAXERR - POINTER TO THE INTERVAL WITH LARGEST ERROR
- C ESTIMATE
- C ERRMAX - ELIST(MAXERR)
- C ERLAST - ERROR ON THE INTERVAL CURRENTLY SUBDIVIDED
- C (BEFORE THAT SUBDIVISION HAS TAKEN PLACE)
- C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
- C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
- C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
- C ABS(RESULT))
- C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
- C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
- C LAST - INDEX FOR SUBDIVISION
- C NRES - NUMBER OF CALLS TO THE EXTRAPOLATION ROUTINE
- C NUMRL2 - NUMBER OF ELEMENTS IN RLIST2. IF AN
- C APPROPRIATE APPROXIMATION TO THE COMPOUNDED
- C INTEGRAL HAS BEEN OBTAINED, IT IS PUT IN
- C RLIST2(NUMRL2) AFTER NUMRL2 HAS BEEN INCREASED
- C BY ONE.
- C ERLARG - SUM OF THE ERRORS OVER THE INTERVALS LARGER
- C THAN THE SMALLEST INTERVAL CONSIDERED UP TO NOW
- C EXTRAP - LOGICAL VARIABLE DENOTING THAT THE ROUTINE
- C IS ATTEMPTING TO PERFORM EXTRAPOLATION. I.E.
- C BEFORE SUBDIVIDING THE SMALLEST INTERVAL WE
- C TRY TO DECREASE THE VALUE OF ERLARG.
- C NOEXT - LOGICAL VARIABLE DENOTING THAT EXTRAPOLATION IS
- C NO LONGER ALLOWED (TRUE-VALUE)
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C OFLOW IS THE LARGEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QAGPE
- EPMACH = R1MACH(4)
- C
- C TEST ON VALIDITY OF PARAMETERS
- C -----------------------------
- C
- IER = 0
- NEVAL = 0
- LAST = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- ALIST(1) = A
- BLIST(1) = B
- RLIST(1) = 0.0E+00
- ELIST(1) = 0.0E+00
- IORD(1) = 0
- LEVEL(1) = 0
- NPTS = NPTS2-2
- IF(NPTS2.LT.2.OR.LIMIT.LE.NPTS.OR.(EPSABS.LE.0.0E+00.AND.
- 1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14))) IER = 6
- IF(IER.EQ.6) GO TO 999
- C
- C IF ANY BREAK POINTS ARE PROVIDED, SORT THEM INTO AN
- C ASCENDING SEQUENCE.
- C
- SIGN = 1.0E+00
- IF(A.GT.B) SIGN = -1.0E+00
- PTS(1) = MIN(A,B)
- IF(NPTS.EQ.0) GO TO 15
- DO 10 I = 1,NPTS
- PTS(I+1) = POINTS(I)
- 10 CONTINUE
- 15 PTS(NPTS+2) = MAX(A,B)
- NINT = NPTS+1
- A1 = PTS(1)
- IF(NPTS.EQ.0) GO TO 40
- NINTP1 = NINT+1
- DO 20 I = 1,NINT
- IP1 = I+1
- DO 20 J = IP1,NINTP1
- IF(PTS(I).LE.PTS(J)) GO TO 20
- TEMP = PTS(I)
- PTS(I) = PTS(J)
- PTS(J) = TEMP
- 20 CONTINUE
- IF(PTS(1).NE.MIN(A,B).OR.PTS(NINTP1).NE.
- 1 MAX(A,B)) IER = 6
- IF(IER.EQ.6) GO TO 999
- C
- C COMPUTE FIRST INTEGRAL AND ERROR APPROXIMATIONS.
- C ------------------------------------------------
- C
- 40 RESABS = 0.0E+00
- DO 50 I = 1,NINT
- B1 = PTS(I+1)
- CALL QK21(F,A1,B1,AREA1,ERROR1,DEFABS,RESA)
- ABSERR = ABSERR+ERROR1
- RESULT = RESULT+AREA1
- NDIN(I) = 0
- IF(ERROR1.EQ.RESA.AND.ERROR1.NE.0.0E+00) NDIN(I) = 1
- RESABS = RESABS+DEFABS
- LEVEL(I) = 0
- ELIST(I) = ERROR1
- ALIST(I) = A1
- BLIST(I) = B1
- RLIST(I) = AREA1
- IORD(I) = I
- A1 = B1
- 50 CONTINUE
- ERRSUM = 0.0E+00
- DO 55 I = 1,NINT
- IF(NDIN(I).EQ.1) ELIST(I) = ABSERR
- ERRSUM = ERRSUM+ELIST(I)
- 55 CONTINUE
- C
- C TEST ON ACCURACY.
- C
- LAST = NINT
- NEVAL = 21*NINT
- DRES = ABS(RESULT)
- ERRBND = MAX(EPSABS,EPSREL*DRES)
- IF(ABSERR.LE.0.1E+03*EPMACH*RESABS.AND.ABSERR.GT.
- 1 ERRBND) IER = 2
- IF(NINT.EQ.1) GO TO 80
- DO 70 I = 1,NPTS
- JLOW = I+1
- IND1 = IORD(I)
- DO 60 J = JLOW,NINT
- IND2 = IORD(J)
- IF(ELIST(IND1).GT.ELIST(IND2)) GO TO 60
- IND1 = IND2
- K = J
- 60 CONTINUE
- IF(IND1.EQ.IORD(I)) GO TO 70
- IORD(K) = IORD(I)
- IORD(I) = IND1
- 70 CONTINUE
- IF(LIMIT.LT.NPTS2) IER = 1
- 80 IF(IER.NE.0.OR.ABSERR.LE.ERRBND) GO TO 999
- C
- C INITIALIZATION
- C --------------
- C
- RLIST2(1) = RESULT
- MAXERR = IORD(1)
- ERRMAX = ELIST(MAXERR)
- AREA = RESULT
- NRMAX = 1
- NRES = 0
- NUMRL2 = 1
- KTMIN = 0
- EXTRAP = .FALSE.
- NOEXT = .FALSE.
- ERLARG = ERRSUM
- ERTEST = ERRBND
- LEVMAX = 1
- IROFF1 = 0
- IROFF2 = 0
- IROFF3 = 0
- IERRO = 0
- UFLOW = R1MACH(1)
- OFLOW = R1MACH(2)
- ABSERR = OFLOW
- KSGN = -1
- IF(DRES.GE.(0.1E+01-0.5E+02*EPMACH)*RESABS) KSGN = 1
- C
- C MAIN DO-LOOP
- C ------------
- C
- DO 160 LAST = NPTS2,LIMIT
- C
- C BISECT THE SUBINTERVAL WITH THE NRMAX-TH LARGEST
- C ERROR ESTIMATE.
- C
- LEVCUR = LEVEL(MAXERR)+1
- A1 = ALIST(MAXERR)
- B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
- A2 = B1
- B2 = BLIST(MAXERR)
- ERLAST = ERRMAX
- CALL QK21(F,A1,B1,AREA1,ERROR1,RESA,DEFAB1)
- CALL QK21(F,A2,B2,AREA2,ERROR2,RESA,DEFAB2)
- C
- C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
- C AND ERROR AND TEST FOR ACCURACY.
- C
- NEVAL = NEVAL+42
- AREA12 = AREA1+AREA2
- ERRO12 = ERROR1+ERROR2
- ERRSUM = ERRSUM+ERRO12-ERRMAX
- AREA = AREA+AREA12-RLIST(MAXERR)
- IF(DEFAB1.EQ.ERROR1.OR.DEFAB2.EQ.ERROR2) GO TO 95
- IF(ABS(RLIST(MAXERR)-AREA12).GT.0.1E-04*ABS(AREA12)
- 1 .OR.ERRO12.LT.0.99E+00*ERRMAX) GO TO 90
- IF(EXTRAP) IROFF2 = IROFF2+1
- IF(.NOT.EXTRAP) IROFF1 = IROFF1+1
- 90 IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX) IROFF3 = IROFF3+1
- 95 LEVEL(MAXERR) = LEVCUR
- LEVEL(LAST) = LEVCUR
- RLIST(MAXERR) = AREA1
- RLIST(LAST) = AREA2
- ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
- C
- C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
- C SET ERROR FLAG.
- C
- IF(IROFF1+IROFF2.GE.10.OR.IROFF3.GE.20) IER = 2
- IF(IROFF2.GE.5) IERRO = 3
- C
- C SET ERROR FLAG IN THE CASE THAT THE NUMBER OF
- C SUBINTERVALS EQUALS LIMIT.
- C
- IF(LAST.EQ.LIMIT) IER = 1
- C
- C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
- C AT A POINT OF THE INTEGRATION RANGE
- C
- IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)*
- 1 (ABS(A2)+0.1E+04*UFLOW)) IER = 4
- C
- C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
- C
- IF(ERROR2.GT.ERROR1) GO TO 100
- ALIST(LAST) = A2
- BLIST(MAXERR) = B1
- BLIST(LAST) = B2
- ELIST(MAXERR) = ERROR1
- ELIST(LAST) = ERROR2
- GO TO 110
- 100 ALIST(MAXERR) = A2
- ALIST(LAST) = A1
- BLIST(LAST) = B1
- RLIST(MAXERR) = AREA2
- RLIST(LAST) = AREA1
- ELIST(MAXERR) = ERROR2
- ELIST(LAST) = ERROR1
- C
- C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
- C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
- C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
- C BISECTED NEXT).
- C
- 110 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
- C ***JUMP OUT OF DO-LOOP
- IF(ERRSUM.LE.ERRBND) GO TO 190
- C ***JUMP OUT OF DO-LOOP
- IF(IER.NE.0) GO TO 170
- IF(NOEXT) GO TO 160
- ERLARG = ERLARG-ERLAST
- IF(LEVCUR+1.LE.LEVMAX) ERLARG = ERLARG+ERRO12
- IF(EXTRAP) GO TO 120
- C
- C TEST WHETHER THE INTERVAL TO BE BISECTED NEXT IS THE
- C SMALLEST INTERVAL.
- C
- IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
- EXTRAP = .TRUE.
- NRMAX = 2
- 120 IF(IERRO.EQ.3.OR.ERLARG.LE.ERTEST) GO TO 140
- C
- C THE SMALLEST INTERVAL HAS THE LARGEST ERROR.
- C BEFORE BISECTING DECREASE THE SUM OF THE ERRORS
- C OVER THE LARGER INTERVALS (ERLARG) AND PERFORM
- C EXTRAPOLATION.
- C
- ID = NRMAX
- JUPBND = LAST
- IF(LAST.GT.(2+LIMIT/2)) JUPBND = LIMIT+3-LAST
- DO 130 K = ID,JUPBND
- MAXERR = IORD(NRMAX)
- ERRMAX = ELIST(MAXERR)
- C ***JUMP OUT OF DO-LOOP
- IF(LEVEL(MAXERR)+1.LE.LEVMAX) GO TO 160
- NRMAX = NRMAX+1
- 130 CONTINUE
- C
- C PERFORM EXTRAPOLATION.
- C
- 140 NUMRL2 = NUMRL2+1
- RLIST2(NUMRL2) = AREA
- IF(NUMRL2.LE.2) GO TO 155
- CALL QELG(NUMRL2,RLIST2,RESEPS,ABSEPS,RES3LA,NRES)
- KTMIN = KTMIN+1
- IF(KTMIN.GT.5.AND.ABSERR.LT.0.1E-02*ERRSUM) IER = 5
- IF(ABSEPS.GE.ABSERR) GO TO 150
- KTMIN = 0
- ABSERR = ABSEPS
- RESULT = RESEPS
- CORREC = ERLARG
- ERTEST = MAX(EPSABS,EPSREL*ABS(RESEPS))
- C ***JUMP OUT OF DO-LOOP
- IF(ABSERR.LT.ERTEST) GO TO 170
- C
- C PREPARE BISECTION OF THE SMALLEST INTERVAL.
- C
- 150 IF(NUMRL2.EQ.1) NOEXT = .TRUE.
- IF(IER.GE.5) GO TO 170
- 155 MAXERR = IORD(1)
- ERRMAX = ELIST(MAXERR)
- NRMAX = 1
- EXTRAP = .FALSE.
- LEVMAX = LEVMAX+1
- ERLARG = ERRSUM
- 160 CONTINUE
- C
- C SET THE FINAL RESULT.
- C ---------------------
- C
- C
- 170 IF(ABSERR.EQ.OFLOW) GO TO 190
- IF((IER+IERRO).EQ.0) GO TO 180
- IF(IERRO.EQ.3) ABSERR = ABSERR+CORREC
- IF(IER.EQ.0) IER = 3
- IF(RESULT.NE.0.0E+00.AND.AREA.NE.0.0E+00)GO TO 175
- IF(ABSERR.GT.ERRSUM)GO TO 190
- IF(AREA.EQ.0.0E+00) GO TO 210
- GO TO 180
- 175 IF(ABSERR/ABS(RESULT).GT.ERRSUM/ABS(AREA))GO TO 190
- C
- C TEST ON DIVERGENCE.
- C
- 180 IF(KSGN.EQ.(-1).AND.MAX(ABS(RESULT),ABS(AREA)).LE.
- 1 DEFABS*0.1E-01) GO TO 210
- IF(0.1E-01.GT.(RESULT/AREA).OR.(RESULT/AREA).GT.0.1E+03.OR.
- 1 ERRSUM.GT.ABS(AREA)) IER = 6
- GO TO 210
- C
- C COMPUTE GLOBAL INTEGRAL SUM.
- C
- 190 RESULT = 0.0E+00
- DO 200 K = 1,LAST
- RESULT = RESULT+RLIST(K)
- 200 CONTINUE
- ABSERR = ERRSUM
- 210 IF(IER.GT.2) IER = IER - 1
- RESULT = RESULT*SIGN
- 999 RETURN
- END
|