123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- *DECK QAGS
- SUBROUTINE QAGS (F, A, B, EPSABS, EPSREL, RESULT, ABSERR, NEVAL,
- + IER, LIMIT, LENW, LAST, IWORK, WORK)
- C***BEGIN PROLOGUE QAGS
- C***PURPOSE The routine calculates an approximation result to a given
- C Definite integral I = Integral of F over (A,B),
- C Hopefully satisfying following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I)).
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A1A1
- C***TYPE SINGLE PRECISION (QAGS-S, DQAGS-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, END POINT SINGULARITIES,
- C EXTRAPOLATION, GENERAL-PURPOSE, GLOBALLY ADAPTIVE,
- C QUADPACK, QUADRATURE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Computation of a definite integral
- C Standard fortran subroutine
- C Real version
- C
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C Function F(X). The actual name for F needs to be
- C Declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C And EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C The routine will end with IER = 6.
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine
- C The estimates for integral and error are
- C less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more sub-
- C divisions by increasing the value of LIMIT
- C (and taking the according dimension
- C adjustments into account. However, if
- C this yields no improvement it is advised
- C to analyze the integrand in order to
- C determine the integration difficulties. If
- C the position of a local difficulty can be
- C determined (e.g. SINGULARITY,
- C DISCONTINUITY within the interval) one
- C will probably gain from splitting up the
- C interval at this point and calling the
- C integrator on the subranges. If possible,
- C an appropriate special-purpose integrator
- C should be used, which is designed for
- C handling the type of difficulty involved.
- C = 2 The occurrence of roundoff error is detec-
- C ted, which prevents the requested
- C tolerance from being achieved.
- C The error may be under-estimated.
- C = 3 Extremely bad integrand behaviour
- C occurs at some points of the integration
- C interval.
- C = 4 The algorithm does not converge.
- C Roundoff error is detected in the
- C Extrapolation table. It is presumed that
- C the requested tolerance cannot be
- C achieved, and that the returned result is
- C the best which can be obtained.
- C = 5 The integral is probably divergent, or
- C slowly convergent. It must be noted that
- C divergence can occur with any other value
- C of IER.
- C = 6 The input is invalid, because
- C (EPSABS.LE.0 AND
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28)
- C OR LIMIT.LT.1 OR LENW.LT.LIMIT*4.
- C RESULT, ABSERR, NEVAL, LAST are set to
- C zero. Except when LIMIT or LENW is
- C invalid, IWORK(1), WORK(LIMIT*2+1) and
- C WORK(LIMIT*3+1) are set to zero, WORK(1)
- C is set to A and WORK(LIMIT+1) TO B.
- C
- C DIMENSIONING PARAMETERS
- C LIMIT - Integer
- C Dimensioning parameter for IWORK
- C LIMIT determines the maximum number of subintervals
- C in the partition of the given integration interval
- C (A,B), LIMIT.GE.1.
- C IF LIMIT.LT.1, the routine will end with IER = 6.
- C
- C LENW - Integer
- C Dimensioning parameter for WORK
- C LENW must be at least LIMIT*4.
- C If LENW.LT.LIMIT*4, the routine will end
- C with IER = 6.
- C
- C LAST - Integer
- C On return, LAST equals the number of subintervals
- C produced in the subdivision process, determines the
- C number of significant elements actually in the WORK
- C Arrays.
- C
- C WORK ARRAYS
- C IWORK - Integer
- C Vector of dimension at least LIMIT, the first K
- C elements of which contain pointers
- C to the error estimates over the subintervals
- C such that WORK(LIMIT*3+IWORK(1)),... ,
- C WORK(LIMIT*3+IWORK(K)) form a decreasing
- C sequence, with K = LAST IF LAST.LE.(LIMIT/2+2),
- C and K = LIMIT+1-LAST otherwise
- C
- C WORK - Real
- C Vector of dimension at least LENW
- C on return
- C WORK(1), ..., WORK(LAST) contain the left
- C end-points of the subintervals in the
- C partition of (A,B),
- C WORK(LIMIT+1), ..., WORK(LIMIT+LAST) contain
- C the right end-points,
- C WORK(LIMIT*2+1), ..., WORK(LIMIT*2+LAST) contain
- C the integral approximations over the subintervals,
- C WORK(LIMIT*3+1), ..., WORK(LIMIT*3+LAST)
- C contain the error estimates.
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QAGSE, XERMSG
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ)
- C***END PROLOGUE QAGS
- C
- C
- REAL A,ABSERR,B,EPSABS,EPSREL,F,RESULT,WORK
- INTEGER IER,IWORK,LENW,LIMIT,LVL,L1,L2,L3,NEVAL
- C
- DIMENSION IWORK(*),WORK(*)
- C
- EXTERNAL F
- C
- C CHECK VALIDITY OF LIMIT AND LENW.
- C
- C***FIRST EXECUTABLE STATEMENT QAGS
- IER = 6
- NEVAL = 0
- LAST = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- IF(LIMIT.LT.1.OR.LENW.LT.LIMIT*4) GO TO 10
- C
- C PREPARE CALL FOR QAGSE.
- C
- L1 = LIMIT+1
- L2 = LIMIT+L1
- L3 = LIMIT+L2
- C
- CALL QAGSE(F,A,B,EPSABS,EPSREL,LIMIT,RESULT,ABSERR,NEVAL,
- 1 IER,WORK(1),WORK(L1),WORK(L2),WORK(L3),IWORK,LAST)
- C
- C CALL ERROR HANDLER IF NECESSARY.
- C
- LVL = 0
- 10 IF(IER.EQ.6) LVL = 1
- IF (IER .NE. 0) CALL XERMSG ('SLATEC', 'QAGS',
- + 'ABNORMAL RETURN', IER, LVL)
- RETURN
- END
|