123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- *DECK QAWCE
- SUBROUTINE QAWCE (F, A, B, C, EPSABS, EPSREL, LIMIT, RESULT,
- + ABSERR, NEVAL, IER, ALIST, BLIST, RLIST, ELIST, IORD, LAST)
- C***BEGIN PROLOGUE QAWCE
- C***PURPOSE The routine calculates an approximation result to a
- C CAUCHY PRINCIPAL VALUE I = Integral of F*W over (A,B)
- C (W(X) = 1/(X-C), (C.NE.A, C.NE.B), hopefully satisfying
- C following claim for accuracy
- C ABS(I-RESULT).LE.MAX(EPSABS,EPSREL*ABS(I))
- C***LIBRARY SLATEC (QUADPACK)
- C***CATEGORY H2A2A1, J4
- C***TYPE SINGLE PRECISION (QAWCE-S, DQAWCE-D)
- C***KEYWORDS AUTOMATIC INTEGRATOR, CAUCHY PRINCIPAL VALUE,
- C CLENSHAW-CURTIS METHOD, QUADPACK, QUADRATURE,
- C SPECIAL-PURPOSE
- C***AUTHOR Piessens, Robert
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C de Doncker, Elise
- C Applied Mathematics and Programming Division
- C K. U. Leuven
- C***DESCRIPTION
- C
- C Computation of a CAUCHY PRINCIPAL VALUE
- C Standard fortran subroutine
- C Real version
- C
- C PARAMETERS
- C ON ENTRY
- C F - Real
- C Function subprogram defining the integrand
- C function F(X). The actual name for F needs to be
- C declared E X T E R N A L in the driver program.
- C
- C A - Real
- C Lower limit of integration
- C
- C B - Real
- C Upper limit of integration
- C
- C C - Real
- C Parameter in the WEIGHT function, C.NE.A, C.NE.B
- C If C = A OR C = B, the routine will end with
- C IER = 6.
- C
- C EPSABS - Real
- C Absolute accuracy requested
- C EPSREL - Real
- C Relative accuracy requested
- C If EPSABS.LE.0
- C and EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28),
- C the routine will end with IER = 6.
- C
- C LIMIT - Integer
- C Gives an upper bound on the number of subintervals
- C in the partition of (A,B), LIMIT.GE.1
- C
- C ON RETURN
- C RESULT - Real
- C Approximation to the integral
- C
- C ABSERR - Real
- C Estimate of the modulus of the absolute error,
- C which should equal or exceed ABS(I-RESULT)
- C
- C NEVAL - Integer
- C Number of integrand evaluations
- C
- C IER - Integer
- C IER = 0 Normal and reliable termination of the
- C routine. It is assumed that the requested
- C accuracy has been achieved.
- C IER.GT.0 Abnormal termination of the routine
- C the estimates for integral and error are
- C less reliable. It is assumed that the
- C requested accuracy has not been achieved.
- C ERROR MESSAGES
- C IER = 1 Maximum number of subdivisions allowed
- C has been achieved. One can allow more sub-
- C divisions by increasing the value of
- C LIMIT. However, if this yields no
- C improvement it is advised to analyze the
- C the integrand, in order to determine the
- C the integration difficulties. If the
- C position of a local difficulty can be
- C determined (e.g. SINGULARITY,
- C DISCONTINUITY within the interval) one
- C will probably gain from splitting up the
- C interval at this point and calling
- C appropriate integrators on the subranges.
- C = 2 The occurrence of roundoff error is detec-
- C ted, which prevents the requested
- C tolerance from being achieved.
- C = 3 Extremely bad integrand behaviour
- C occurs at some interior points of
- C the integration interval.
- C = 6 The input is invalid, because
- C C = A or C = B or
- C (EPSABS.LE.0 and
- C EPSREL.LT.MAX(50*REL.MACH.ACC.,0.5D-28))
- C or LIMIT.LT.1.
- C RESULT, ABSERR, NEVAL, RLIST(1), ELIST(1),
- C IORD(1) and LAST are set to zero. ALIST(1)
- C and BLIST(1) are set to A and B
- C respectively.
- C
- C ALIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the left
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C BLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the right
- C end points of the subintervals in the partition
- C of the given integration range (A,B)
- C
- C RLIST - Real
- C Vector of dimension at least LIMIT, the first
- C LAST elements of which are the integral
- C approximations on the subintervals
- C
- C ELIST - Real
- C Vector of dimension LIMIT, the first LAST
- C elements of which are the moduli of the absolute
- C error estimates on the subintervals
- C
- C IORD - Integer
- C Vector of dimension at least LIMIT, the first K
- C elements of which are pointers to the error
- C estimates over the subintervals, so that
- C ELIST(IORD(1)), ..., ELIST(IORD(K)) with K = LAST
- C If LAST.LE.(LIMIT/2+2), and K = LIMIT+1-LAST
- C otherwise, form a decreasing sequence
- C
- C LAST - Integer
- C Number of subintervals actually produced in
- C the subdivision process
- C
- C***REFERENCES (NONE)
- C***ROUTINES CALLED QC25C, QPSRT, R1MACH
- C***REVISION HISTORY (YYMMDD)
- C 800101 DATE WRITTEN
- C 890531 Changed all specific intrinsics to generic. (WRB)
- C 890831 Modified array declarations. (WRB)
- C 890831 REVISION DATE from Version 3.2
- C 891214 Prologue converted to Version 4.0 format. (BAB)
- C***END PROLOGUE QAWCE
- C
- REAL A,AA,ABSERR,ALIST,AREA,AREA1,AREA12,AREA2,A1,A2,B,BB,BLIST,
- 1 B1,B2,C,R1MACH,ELIST,EPMACH,EPSABS,EPSREL,ERRBND,ERRMAX,ERROR1,
- 2 ERROR2,ERRSUM,F,RESULT,RLIST,UFLOW
- INTEGER IER,IORD,IROFF1,IROFF2,K,KRULE,LAST,LIMIT,MAXERR,NEV,
- 1 NEVAL,NRMAX
- C
- DIMENSION ALIST(*),BLIST(*),RLIST(*),ELIST(*),
- 1 IORD(*)
- C
- EXTERNAL F
- C
- C LIST OF MAJOR VARIABLES
- C -----------------------
- C
- C ALIST - LIST OF LEFT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C BLIST - LIST OF RIGHT END POINTS OF ALL SUBINTERVALS
- C CONSIDERED UP TO NOW
- C RLIST(I) - APPROXIMATION TO THE INTEGRAL OVER
- C (ALIST(I),BLIST(I))
- C ELIST(I) - ERROR ESTIMATE APPLYING TO RLIST(I)
- C MAXERR - POINTER TO THE INTERVAL WITH LARGEST
- C ERROR ESTIMATE
- C ERRMAX - ELIST(MAXERR)
- C AREA - SUM OF THE INTEGRALS OVER THE SUBINTERVALS
- C ERRSUM - SUM OF THE ERRORS OVER THE SUBINTERVALS
- C ERRBND - REQUESTED ACCURACY MAX(EPSABS,EPSREL*
- C ABS(RESULT))
- C *****1 - VARIABLE FOR THE LEFT SUBINTERVAL
- C *****2 - VARIABLE FOR THE RIGHT SUBINTERVAL
- C LAST - INDEX FOR SUBDIVISION
- C
- C
- C MACHINE DEPENDENT CONSTANTS
- C ---------------------------
- C
- C EPMACH IS THE LARGEST RELATIVE SPACING.
- C UFLOW IS THE SMALLEST POSITIVE MAGNITUDE.
- C
- C***FIRST EXECUTABLE STATEMENT QAWCE
- EPMACH = R1MACH(4)
- UFLOW = R1MACH(1)
- C
- C
- C TEST ON VALIDITY OF PARAMETERS
- C ------------------------------
- C
- IER = 6
- NEVAL = 0
- LAST = 0
- ALIST(1) = A
- BLIST(1) = B
- RLIST(1) = 0.0E+00
- ELIST(1) = 0.0E+00
- IORD(1) = 0
- RESULT = 0.0E+00
- ABSERR = 0.0E+00
- IF (C.EQ.A.OR.C.EQ.B.OR.(EPSABS.LE.0.0E+00.AND.
- 1 EPSREL.LT.MAX(0.5E+02*EPMACH,0.5E-14))) GO TO 999
- C
- C FIRST APPROXIMATION TO THE INTEGRAL
- C -----------------------------------
- C
- AA=A
- BB=B
- IF (A.LE.B) GO TO 10
- AA=B
- BB=A
- 10 IER=0
- KRULE = 1
- CALL QC25C(F,AA,BB,C,RESULT,ABSERR,KRULE,NEVAL)
- LAST = 1
- RLIST(1) = RESULT
- ELIST(1) = ABSERR
- IORD(1) = 1
- ALIST(1) = A
- BLIST(1) = B
- C
- C TEST ON ACCURACY
- C
- ERRBND = MAX(EPSABS,EPSREL*ABS(RESULT))
- IF(LIMIT.EQ.1) IER = 1
- IF(ABSERR.LT.MIN(0.1E-01*ABS(RESULT),ERRBND)
- 1 .OR.IER.EQ.1) GO TO 70
- C
- C INITIALIZATION
- C --------------
- C
- ALIST(1) = AA
- BLIST(1) = BB
- RLIST(1) = RESULT
- ERRMAX = ABSERR
- MAXERR = 1
- AREA = RESULT
- ERRSUM = ABSERR
- NRMAX = 1
- IROFF1 = 0
- IROFF2 = 0
- C
- C MAIN DO-LOOP
- C ------------
- C
- DO 40 LAST = 2,LIMIT
- C
- C BISECT THE SUBINTERVAL WITH NRMAX-TH LARGEST
- C ERROR ESTIMATE.
- C
- A1 = ALIST(MAXERR)
- B1 = 0.5E+00*(ALIST(MAXERR)+BLIST(MAXERR))
- B2 = BLIST(MAXERR)
- IF(C.LE.B1.AND.C.GT.A1) B1 = 0.5E+00*(C+B2)
- IF(C.GT.B1.AND.C.LT.B2) B1 = 0.5E+00*(A1+C)
- A2 = B1
- KRULE = 2
- CALL QC25C(F,A1,B1,C,AREA1,ERROR1,KRULE,NEV)
- NEVAL = NEVAL+NEV
- CALL QC25C(F,A2,B2,C,AREA2,ERROR2,KRULE,NEV)
- NEVAL = NEVAL+NEV
- C
- C IMPROVE PREVIOUS APPROXIMATIONS TO INTEGRAL
- C AND ERROR AND TEST FOR ACCURACY.
- C
- AREA12 = AREA1+AREA2
- ERRO12 = ERROR1+ERROR2
- ERRSUM = ERRSUM+ERRO12-ERRMAX
- AREA = AREA+AREA12-RLIST(MAXERR)
- IF(ABS(RLIST(MAXERR)-AREA12).LT.0.1E-04*ABS(AREA12)
- 1 .AND.ERRO12.GE.0.99E+00*ERRMAX.AND.KRULE.EQ.0)
- 2 IROFF1 = IROFF1+1
- IF(LAST.GT.10.AND.ERRO12.GT.ERRMAX.AND.KRULE.EQ.0)
- 1 IROFF2 = IROFF2+1
- RLIST(MAXERR) = AREA1
- RLIST(LAST) = AREA2
- ERRBND = MAX(EPSABS,EPSREL*ABS(AREA))
- IF(ERRSUM.LE.ERRBND) GO TO 15
- C
- C TEST FOR ROUNDOFF ERROR AND EVENTUALLY
- C SET ERROR FLAG.
- C
- IF(IROFF1.GE.6.AND.IROFF2.GT.20) IER = 2
- C
- C SET ERROR FLAG IN THE CASE THAT NUMBER OF INTERVAL
- C BISECTIONS EXCEEDS LIMIT.
- C
- IF(LAST.EQ.LIMIT) IER = 1
- C
- C SET ERROR FLAG IN THE CASE OF BAD INTEGRAND BEHAVIOUR
- C AT A POINT OF THE INTEGRATION RANGE.
- C
- IF(MAX(ABS(A1),ABS(B2)).LE.(0.1E+01+0.1E+03*EPMACH)
- 1 *(ABS(A2)+0.1E+04*UFLOW)) IER = 3
- C
- C APPEND THE NEWLY-CREATED INTERVALS TO THE LIST.
- C
- 15 IF(ERROR2.GT.ERROR1) GO TO 20
- ALIST(LAST) = A2
- BLIST(MAXERR) = B1
- BLIST(LAST) = B2
- ELIST(MAXERR) = ERROR1
- ELIST(LAST) = ERROR2
- GO TO 30
- 20 ALIST(MAXERR) = A2
- ALIST(LAST) = A1
- BLIST(LAST) = B1
- RLIST(MAXERR) = AREA2
- RLIST(LAST) = AREA1
- ELIST(MAXERR) = ERROR2
- ELIST(LAST) = ERROR1
- C
- C CALL SUBROUTINE QPSRT TO MAINTAIN THE DESCENDING ORDERING
- C IN THE LIST OF ERROR ESTIMATES AND SELECT THE
- C SUBINTERVAL WITH NRMAX-TH LARGEST ERROR ESTIMATE (TO BE
- C BISECTED NEXT).
- C
- 30 CALL QPSRT(LIMIT,LAST,MAXERR,ERRMAX,ELIST,IORD,NRMAX)
- C ***JUMP OUT OF DO-LOOP
- IF(IER.NE.0.OR.ERRSUM.LE.ERRBND) GO TO 50
- 40 CONTINUE
- C
- C COMPUTE FINAL RESULT.
- C ---------------------
- C
- 50 RESULT = 0.0E+00
- DO 60 K=1,LAST
- RESULT = RESULT+RLIST(K)
- 60 CONTINUE
- ABSERR = ERRSUM
- 70 IF (AA.EQ.B) RESULT=-RESULT
- 999 RETURN
- END
|